Stronegger W J, Berghold A, Seeber G U
Institut für Sozialmedizin, Universität Graz.
Soz Praventivmed. 1998;43(6):312-21. doi: 10.1007/BF01299719.
Different ways to define interaction between exposition factors in epidemiological studies as well as the choice between additive and multiplicative no interaction leads frequently to confusion during data analysis. In their standard form methods of event data analysis such as Poisson or logistic regression assume a multiplicative parameterization of no interaction. However, evidence from empirical investigations as well as causal models of disease etiology, e.g. the simple independent action model of Finney or the sufficient-component-causes model of Rothman, suggest additive or other kinds of non-multiplicative concepts of no interaction. For additive structured data we illustrate the asymptotic bias ("interaction-bias") of main effect estimates which are based on inappropriate data analysis using multiplicative models and omitting significant or non-significant interaction terms. We show that both the epidemiological study design as well as the underlying causal model are determinants of the interaction structure of the data and should be considered in the model selection process. The definition of interaction should distinguish between risk, rate and odds if risks are not very small. Using generalized linear models with parametrical link functions we are able to analyze non-multiplicative interaction structures.
在流行病学研究中,定义暴露因素之间相互作用的不同方式,以及在相加性无交互作用和相乘性无交互作用之间进行选择,常常会在数据分析过程中导致混淆。在其标准形式下,诸如泊松回归或逻辑回归等事件数据分析方法假定无交互作用的相乘参数化。然而,来自实证研究以及疾病病因因果模型(例如芬尼的简单独立作用模型或罗斯曼的充分病因组分病因模型)的证据表明,存在相加性或其他类型的非相乘性无交互作用概念。对于相加性结构数据,我们说明了基于使用相乘模型且省略显著或不显著交互作用项的不恰当数据分析得出的主效应估计值的渐近偏差(“交互作用偏差”)。我们表明,流行病学研究设计以及潜在的因果模型都是数据交互作用结构的决定因素,在模型选择过程中都应予以考虑。如果风险不是非常小,交互作用的定义应区分风险、发病率和比值比。使用具有参数化连接函数的广义线性模型,我们能够分析非相乘性交互作用结构。