Suppr超能文献

重复测量的SAS PROC.MIXED模型的问题表述。

Problematic formulations of SAS PROC.MIXED models for repeated measurements.

作者信息

Overall J E, Ahn C, Shivakumar C, Kalburgi Y

机构信息

University of Texas Medical School, Houston, USA.

出版信息

J Biopharm Stat. 1999 Mar;9(1):189-216. doi: 10.1081/BIP-100101008.

Abstract

The work reported in this article was undertaken to evaluate the utility of SAS PROC.MIXED for testing hypotheses concerning GROUP and TIME x GROUP effects in repeated measurements designs with drop-outs. If dropouts are not completely at random, covariate control over informative individual differences on which dropout data patterns depend is widely recognized to be important. However, the inclusion of baseline scores and time-in-study as between-subject covariates in an otherwise well formulated SAS PROC.MIXED model resulted in inadequate control over type I error in simulated data with or without drop-outs present. The inadequate model formulations and resulting deviant test sizes are presented here as a warning for others who might be guided by the same information sources to employ similar model specifications when analyzing data from actual clinical trials. It is important that the complete model specification be provided in detail when reporting applications of the general linear mixed-model procedure. A single random-coefficients model produced appropriate test sizes, but it provided inferior power when informative covariates were added in the attempt to adjust for dropouts. As an alternative, the incorporation of covariate controls in simpler two-stage endpoint or random regression analyses is documented to be effective in dealing with dropouts under specifiable conditions.

摘要

本文所报告的工作旨在评估SAS PROC.MIXED在具有失访情况的重复测量设计中检验关于组间和时间×组间效应假设的效用。如果失访并非完全随机,那么对失访数据模式所依赖的信息性个体差异进行协变量控制被广泛认为是很重要的。然而,在一个原本构建良好的SAS PROC.MIXED模型中纳入基线分数和研究时间作为受试者间协变量,在存在或不存在失访的模拟数据中,对I型错误的控制都不足。此处呈现不充分的模型构建及由此产生的偏差检验规模,是为了给其他可能受相同信息源引导、在分析实际临床试验数据时采用类似模型规范的人敲响警钟。在报告一般线性混合模型程序的应用时,详细提供完整的模型规范很重要。一个单一的随机系数模型产生了合适的检验规模,但在尝试加入信息性协变量以调整失访情况时,其检验效能较低。作为一种替代方法,在更简单的两阶段终点分析或随机回归分析中纳入协变量控制,在特定条件下被证明对处理失访情况有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验