Ortega JL, Roche D, Sengupta-Gopalan C
Agronomy and Horticulture Department, New Mexico State University, Las Cruces, New Mexico 88003, USA.
Plant Physiol. 1999 Apr;119(4):1483-96. doi: 10.1104/pp.119.4.1483.
Glutamine synthetase (GS) is the key enzyme in ammonia assimilation and catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. GS in plants is an octameric enzyme. Recent work from our laboratory suggests that GS activity in plants may be regulated at the level of protein turnover (S.J. Temple, T.J. Knight, P.J. Unkefer, C. Sengupta-Gopalan [1993] Mol Gen Genet 236: 315-325; S.J. Temple, S. Kunjibettu, D. Roche, C. Sengupta-Gopalan [1996] Plant Physiol 112: 1723-1733; S.J. Temple, C. Sengupta-Gopalan [1997] In C.H. Foyer, W.P. Quick, eds, A Molecular Approach to Primary Metabolism in Higher Plants. Taylor & Francis, London, pp 155-177). Oxidative modification of GS has been implicated as the first step in the turnover of GS in bacteria. By incubating soybean (Glycine max) root extract enriched in GS in a metal-catalyzed oxidation system to produce the.OH radical, we have shown that GS is oxidized and that oxidized GS is inactive and more susceptible to degradation than nonoxidized GS. Histidine and cysteine protect GS from metal-catalyzed inactivation, indicating that oxidation modifies the GS active site and that cysteine and histidine residues are the site of modification. Similarly, ATP and particularly ATP/glutamate give the enzyme the greatest protection against oxidative inactivation. The roots of plants fed ammonium nitrate showed a 3-fold increase in the level of GS polypeptides and activity compared with plants not fed ammonium nitrate but without a corresponding increase in the GS transcript level. This would suggest either translational or posttranslational control of GS levels.
谷氨酰胺合成酶(GS)是氨同化过程中的关键酶,催化氨与谷氨酸在ATP依赖下缩合生成谷氨酰胺。植物中的GS是一种八聚体酶。我们实验室最近的研究表明,植物中GS的活性可能在蛋白质周转水平受到调控(S.J. Temple、T.J. Knight、P.J. Unkefer、C. Sengupta-Gopalan [1993] 《分子遗传学与普通遗传学》236: 315 - 325;S.J. Temple、S. Kunjibettu、D. Roche、C. Sengupta-Gopalan [1996] 《植物生理学》112: 1723 - 1733;S.J. Temple、C. Sengupta-Gopalan [1997] 载于C.H. Foyer、W.P. Quick编著的《高等植物初级代谢的分子方法》。泰勒与弗朗西斯出版社,伦敦,第155 - 177页)。GS的氧化修饰被认为是细菌中GS周转的第一步。通过在金属催化氧化系统中孵育富含GS的大豆(Glycine max)根提取物以产生·OH自由基,我们发现GS被氧化,且氧化后的GS无活性,比未氧化的GS更易降解。组氨酸和半胱氨酸可保护GS免受金属催化的失活作用,这表明氧化修饰了GS的活性位点,且半胱氨酸和组氨酸残基是修饰位点。同样,ATP,尤其是ATP/谷氨酸能给予该酶最大程度的抗氧化失活保护。与未施硝酸铵的植物相比,施硝酸铵的植物根系中GS多肽水平和活性增加了3倍,但GS转录本水平没有相应增加。这表明GS水平可能受到翻译或翻译后调控。