Langhorst U, Loris R, Denisov V P, Doumen J, Roose P, Maes D, Halle B, Steyaert J
Dienst Ultrastructuur, Vlaams Interuniversitair instituut voor Biotechnologie, Vrije Universiteit Brussel, Belgium.
Protein Sci. 1999 Apr;8(4):722-30. doi: 10.1110/ps.8.4.722.
The reoccurrence of water molecules in crystal structures of RNase T1 was investigated. Five waters were found to be invariant in RNase T1 as well as in six other related fungal RNases. The structural, dynamical, and functional characteristics of one of these conserved hydration sites (WAT1) were analyzed by protein engineering, X-ray crystallography, and (17)O and 2H nuclear magnetic relaxation dispersion (NMRD). The position of WAT1 and its surrounding hydrogen bond network are unaffected by deletions of two neighboring side chains. In the mutant Thr93Gln, the Gln93N epsilon2 nitrogen replaces WAT1 and participates in a similar hydrogen bond network involving Cys6, Asn9, Asp76, and Thr91. The ability of WAT1 to form four hydrogen bonds may explain why evolution has preserved a water molecule, rather than a side-chain atom, at the center of this intricate hydrogen bond network. Comparison of the (17)O NMRD profiles from wild-type and Thr93Gln RNase T1 yield a mean residence time of 7 ns at 27 degrees C and an orientational order parameter of 0.45. The effects of mutations around WAT1 on the kinetic parameters of RNase T1 are small but significant and probably relate to the dynamics of the active site.
对核糖核酸酶T1晶体结构中水分子的重现性进行了研究。发现有五个水分子在核糖核酸酶T1以及其他六种相关真菌核糖核酸酶中是不变的。通过蛋白质工程、X射线晶体学以及(17)O和2H核磁共振弛豫色散(NMRD)分析了其中一个保守水合位点(WAT1)的结构、动力学和功能特性。WAT1的位置及其周围的氢键网络不受两个相邻侧链缺失的影响。在突变体Thr93Gln中,Gln93N ε2氮取代了WAT1,并参与了一个涉及Cys6、Asn9、Asp76和Thr91的类似氢键网络。WAT1形成四个氢键的能力可能解释了为什么进化在这个复杂的氢键网络中心保留了一个水分子,而不是一个侧链原子。野生型和Thr93Gln核糖核酸酶T1的(17)O NMRD谱比较得出在27℃时的平均停留时间为7 ns,取向序参数为0.45。WAT1周围突变对核糖核酸酶T1动力学参数的影响较小但很显著,可能与活性位点的动力学有关。