Suppr超能文献

核糖核酸酶T1中保守水合位点的结构与功能作用剖析

Dissection of the structural and functional role of a conserved hydration site in RNase T1.

作者信息

Langhorst U, Loris R, Denisov V P, Doumen J, Roose P, Maes D, Halle B, Steyaert J

机构信息

Dienst Ultrastructuur, Vlaams Interuniversitair instituut voor Biotechnologie, Vrije Universiteit Brussel, Belgium.

出版信息

Protein Sci. 1999 Apr;8(4):722-30. doi: 10.1110/ps.8.4.722.

Abstract

The reoccurrence of water molecules in crystal structures of RNase T1 was investigated. Five waters were found to be invariant in RNase T1 as well as in six other related fungal RNases. The structural, dynamical, and functional characteristics of one of these conserved hydration sites (WAT1) were analyzed by protein engineering, X-ray crystallography, and (17)O and 2H nuclear magnetic relaxation dispersion (NMRD). The position of WAT1 and its surrounding hydrogen bond network are unaffected by deletions of two neighboring side chains. In the mutant Thr93Gln, the Gln93N epsilon2 nitrogen replaces WAT1 and participates in a similar hydrogen bond network involving Cys6, Asn9, Asp76, and Thr91. The ability of WAT1 to form four hydrogen bonds may explain why evolution has preserved a water molecule, rather than a side-chain atom, at the center of this intricate hydrogen bond network. Comparison of the (17)O NMRD profiles from wild-type and Thr93Gln RNase T1 yield a mean residence time of 7 ns at 27 degrees C and an orientational order parameter of 0.45. The effects of mutations around WAT1 on the kinetic parameters of RNase T1 are small but significant and probably relate to the dynamics of the active site.

摘要

对核糖核酸酶T1晶体结构中水分子的重现性进行了研究。发现有五个水分子在核糖核酸酶T1以及其他六种相关真菌核糖核酸酶中是不变的。通过蛋白质工程、X射线晶体学以及(17)O和2H核磁共振弛豫色散(NMRD)分析了其中一个保守水合位点(WAT1)的结构、动力学和功能特性。WAT1的位置及其周围的氢键网络不受两个相邻侧链缺失的影响。在突变体Thr93Gln中,Gln93N ε2氮取代了WAT1,并参与了一个涉及Cys6、Asn9、Asp76和Thr91的类似氢键网络。WAT1形成四个氢键的能力可能解释了为什么进化在这个复杂的氢键网络中心保留了一个水分子,而不是一个侧链原子。野生型和Thr93Gln核糖核酸酶T1的(17)O NMRD谱比较得出在27℃时的平均停留时间为7 ns,取向序参数为0.45。WAT1周围突变对核糖核酸酶T1动力学参数的影响较小但很显著,可能与活性位点的动力学有关。

相似文献

4
Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP.
Biochemistry. 1996 Jun 25;35(25):8329-34. doi: 10.1021/bi960493d.
7
The pseudomolecule method and the structure of globular proteins. II. The example of ribonuclease F1 and T1.
Biopolymers. 2001 Nov;59(6):402-10. doi: 10.1002/1097-0282(200111)59:6<402::AID-BIP1045>3.0.CO;2-O.
9
Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
J Mol Biol. 2006 Sep 22;362(3):594-604. doi: 10.1016/j.jmb.2006.07.056. Epub 2006 Jul 29.

引用本文的文献

1
A secreted ribonuclease effector from Verticillium dahliae localizes in the plant nucleus to modulate host immunity.
Mol Plant Pathol. 2022 Aug;23(8):1122-1140. doi: 10.1111/mpp.13213. Epub 2022 Apr 1.
2
The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA.
PLoS Pathog. 2019 Mar 11;15(3):e1007620. doi: 10.1371/journal.ppat.1007620. eCollection 2019 Mar.
3
Mechanism of endonuclease cleavage by the HigB toxin.
Nucleic Acids Res. 2016 Sep 19;44(16):7944-53. doi: 10.1093/nar/gkw598. Epub 2016 Jul 4.
4
Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin.
Nucleic Acids Res. 2015 Sep 18;43(16):8002-12. doi: 10.1093/nar/gkv791. Epub 2015 Aug 10.
5
Structural coupling between FKBP12 and buried water.
Proteins. 2009 Feb 15;74(3):603-11. doi: 10.1002/prot.22176.
6
Minimizing frustration by folding in an aqueous environment.
Arch Biochem Biophys. 2008 Jan 1;469(1):118-31. doi: 10.1016/j.abb.2007.07.007. Epub 2007 Jul 14.
7
Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins.
Biophys J. 2007 Oct 15;93(8):2791-804. doi: 10.1529/biophysj.107.104182. Epub 2007 Jun 29.
9
A "structural" water molecule in the family of fatty acid binding proteins.
Protein Sci. 2000 Mar;9(3):497-504. doi: 10.1110/ps.9.3.497.
10
Protein-bound water molecule counting by resolution of (1)H spin-lattice relaxation mechanisms.
Biophys J. 2000 Apr;78(4):2163-9. doi: 10.1016/S0006-3495(00)76763-4.

本文引用的文献

2
Hydration water molecules of nucleotide-free RNase T1 studied by NMR spectroscopy in solution.
J Biomol NMR. 1998 Jan;11(1):1-15. doi: 10.1023/a:1008281208888.
4
An extensively modified version of MolScript that includes greatly enhanced coloring capabilities.
J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1.
5
Protein hydration dynamics in aqueous solution.
Faraday Discuss. 1996(103):227-44. doi: 10.1039/fd9960300227.
6
Using buried water molecules to explore the energy landscape of proteins.
Nat Struct Biol. 1996 Jun;3(6):505-9. doi: 10.1038/nsb0696-505.
7
A purification method for labile variants of ribonuclease T1.
Protein Expr Purif. 1993 Feb;4(1):52-8. doi: 10.1006/prep.1993.1008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验