McBain C J, Freund T F, Mody I
Laboratory of Cellular and Molecular Neurophysiology, NICHD, Bethesda, MD 20892-4495, USA.
Trends Neurosci. 1999 May;22(5):228-35. doi: 10.1016/s0166-2236(98)01347-2.
In the hippocampal formation GABAergic inhibitory interneurons have a major role in the synchronization of neuronal activity and are involved in the generation of large-scale network oscillations. Thus, interneurons function as a 'clock' that dictates when principal cells fire during suprathreshold excitatory drive. Interneurons receive strong excitatory innervation from glutamatergic neurons and it has been much debated whether these synapses show mechanisms of long-term plasticity similar to those found at principal-cell synapses. Recent findings support the lack of conventional forms of LTP and LTD in most interneurons, partly owing to the distinct anatomical and neurochemical features of interneuronal excitatory synapses. The uncommon properties of excitatory synapses on interneurons might be required for their functioning as accurate and reliable neuronal oscillators.
在海马结构中,γ-氨基丁酸(GABA)能抑制性中间神经元在神经元活动同步化过程中起主要作用,并参与大规模网络振荡的产生。因此,中间神经元起着“时钟”的作用,决定着在阈上兴奋性驱动期间主细胞何时放电。中间神经元接受来自谷氨酸能神经元的强烈兴奋性神经支配,这些突触是否表现出与主细胞突触类似的长期可塑性机制一直存在很多争议。最近的研究结果支持大多数中间神经元缺乏传统形式的长时程增强(LTP)和长时程抑制(LTD),部分原因是中间神经元兴奋性突触具有独特的解剖学和神经化学特征。中间神经元上兴奋性突触的不寻常特性可能是其作为精确可靠的神经元振荡器发挥功能所必需的。