Suppr超能文献

Disruption, replacement, and cosuppression of nitrate assimilation genes in Stagonospora nodorum.

作者信息

Howard K, Foster S G, Cooley R N, Caten C E

机构信息

School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

出版信息

Fungal Genet Biol. 1999 Mar;26(2):152-62. doi: 10.1006/fgbi.1998.1113.

Abstract

We used Stagonospora (Septoria) nodorum to explore gene disruption as a general method of fungicide target validation. Nitrate reductase was chosen as a model target because the gene (NIA1) has been cloned from S. nodorum and disruptants should have a readily detectable phenotype (chlorate resistant and nitrate nonutilizing). We have succeeded in disrupting the NIA1 gene by both integration of an unselected vector during cotransformation and one-step gene replacement. Around 2% of transformants from the cotransformation approach became nitrate nonutilizing and Southern analysis confirmed disruption of the resident NIA1 gene. Half of the transformants with the gene replacement vector showed the nitrate nonutilizing phenotype expected from disruption. However, Southern analyses of 14 of these transformants showed that only 6 contained the expected NIA1 gene replacement. Of the remaining transformants, 6 had integrated multiple copies of the vector elsewhere in their genome and still had a functional nitrate reductase gene. Their inability to utilize nitrate was due to a lack of nitrite reductase activity. How this phenotype arose is not clear, but it might involve cosuppression of the nitrite reductase gene as the vector carried 1. 1 kb of the coding region and the complete 5' region of this gene which is adjacent to NIA1. Mutants of both types retained full pathogenicity in detached leaf assays, thereby invalidating both nitrate and nitrite reductase as fungicide targets.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验