Suppr超能文献

一种参与解淀粉芽孢杆菌XL-1降解黄原胶过程的丙酮酸化甘露糖特异性黄原胶裂解酶。

A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.

作者信息

Ruijssenaars H J, de Bont J A, Hartmans S

机构信息

Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen University, 6700 EV Wageningen, The Netherlands.

出版信息

Appl Environ Microbiol. 1999 Jun;65(6):2446-52. doi: 10.1128/AEM.65.6.2446-2452.1999.

Abstract

The xanthan-degrading bacterium Paenibacillus alginolyticus XL-1, isolated from soil, degrades approximately 28% of the xanthan molecule and appears to leave the backbone intact. Several xanthan-degrading enzymes were excreted during growth on xanthan, including xanthan lyase. Xanthan lyase production was induced by xanthan and inhibited by glucose and low-molecular-weight enzymatic degradation products from xanthan. A xanthan lyase with a molecular mass of 85 kDa and a pI of 7.9 was purified and characterized. The enzyme is specific for pyruvated mannosyl side chain residues and optimally active at pH 6.0 and 55 degrees C.

摘要

从土壤中分离得到的解黄原胶细菌溶藻芽孢杆菌XL-1可降解约28%的黄原胶分子,且似乎能使主链保持完整。在以黄原胶为生长底物的过程中,该细菌分泌了几种解黄原胶酶,包括黄原胶裂解酶。黄原胶可诱导黄原胶裂解酶的产生,而葡萄糖和黄原胶的低分子量酶促降解产物则对其产生抑制作用。一种分子量为85 kDa、等电点为7.9的黄原胶裂解酶被纯化并进行了表征。该酶对丙酮酸化甘露糖基侧链残基具有特异性,在pH 6.0和55℃时活性最佳。

相似文献

1
A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1.
Appl Environ Microbiol. 1999 Jun;65(6):2446-52. doi: 10.1128/AEM.65.6.2446-2452.1999.
3
Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains.
Appl Environ Microbiol. 1998 Oct;64(10):3765-8. doi: 10.1128/AEM.64.10.3765-3768.1998.
4
A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1.
Appl Environ Microbiol. 2000 Sep;66(9):3945-50. doi: 10.1128/AEM.66.9.3945-3950.2000.
5
Production and purification of a novel xanthan lyase from a xanthan-degrading Microbacterium sp. strain XT11.
ScientificWorldJournal. 2014;2014:368434. doi: 10.1155/2014/368434. Epub 2014 Jun 26.
7
Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1.
Appl Environ Microbiol. 1999 Jun;65(6):2520-6. doi: 10.1128/AEM.65.6.2520-2526.1999.
8
Crystal structure of Bacillus sp. GL1 xanthan lyase, which acts on the side chains of xanthan.
J Biol Chem. 2003 Feb 28;278(9):7663-73. doi: 10.1074/jbc.M208100200. Epub 2002 Dec 9.
9
Xanthan lyases--novel enzymes found in various bacterial species.
J Gen Microbiol. 1987 Nov;133(11):3129-34. doi: 10.1099/00221287-133-11-3129.
10
Rhizobium spp exopolysaccharides production and xanthan lyase use on its structural modification.
Int J Biol Macromol. 2019 Sep 1;136:424-435. doi: 10.1016/j.ijbiomac.2019.06.077. Epub 2019 Jun 13.

引用本文的文献

1
is ecologically and genetically distinct from the major opportunistic pathogen .
Microb Genom. 2025 Jun;11(6). doi: 10.1099/mgen.0.001420.
3
Dissecting the essential role of N-glycosylation in catalytic performance of xanthan lyase.
Bioresour Bioprocess. 2022 Dec 16;9(1):129. doi: 10.1186/s40643-022-00620-5.
4
Identification of a novel xanthan-binding module of a multi-modular sp. xanthanase.
Front Microbiol. 2024 Mar 26;15:1386552. doi: 10.3389/fmicb.2024.1386552. eCollection 2024.
5
Xanthan: enzymatic degradation and novel perspectives of applications.
Appl Microbiol Biotechnol. 2024 Feb 21;108(1):227. doi: 10.1007/s00253-024-13016-6.
6
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan.
Int J Mol Sci. 2023 Mar 13;24(6):5480. doi: 10.3390/ijms24065480.
7
Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota.
Nat Microbiol. 2022 Apr;7(4):556-569. doi: 10.1038/s41564-022-01093-0. Epub 2022 Apr 1.
8
Characterization of a Hyaluronic Acid Utilization Locus and Identification of Two Hyaluronate Lyases in a Marine Bacterium LWW-9.
Front Microbiol. 2021 Jun 10;12:696096. doi: 10.3389/fmicb.2021.696096. eCollection 2021.
9
Proteomic Analysis of the Xanthan-Degrading Pathway of sp. XT11.
ACS Omega. 2019 Nov 6;4(21):19096-19105. doi: 10.1021/acsomega.9b02313. eCollection 2019 Nov 19.
10
Production of Xanthanases by spp.: Complete Xanthan Degradation and Possible Applications.
Iran J Biotechnol. 2017 Aug 19;15(2):120-127. doi: 10.15171/ijb.1477. eCollection 2017.

本文引用的文献

2
Purification and characterization of a pyruvated-mannose-specific xanthan lyase from heat-stable, salt-tolerant bacteria.
Appl Environ Microbiol. 1991 Sep;57(9):2523-8. doi: 10.1128/aem.57.9.2523-2528.1991.
3
Purification and Properties of a Novel Xanthan Depolymerase from a Salt-Tolerant Bacterial Culture, HD1.
Appl Environ Microbiol. 1986 Jul;52(1):37-44. doi: 10.1128/aem.52.1.37-44.1986.
4
Biodegradation of Xanthan Gum by Bacillus sp.
Appl Environ Microbiol. 1982 Jul;44(1):5-11. doi: 10.1128/aem.44.1.5-11.1982.
6
Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains.
Appl Environ Microbiol. 1998 Oct;64(10):3765-8. doi: 10.1128/AEM.64.10.3765-3768.1998.
9
Polysaccharide lyases.
FEMS Microbiol Rev. 1995 Jul;16(4):323-47. doi: 10.1111/j.1574-6976.1995.tb00179.x.
10
Extracellular and intracellular polygllacturonic acid trans-eliminases of Erwinia carotovora.
Arch Biochem Biophys. 1968 Feb;123(2):298-306. doi: 10.1016/0003-9861(68)90138-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验