Suppr超能文献

非洲爪蟾中基于微管的内质网运动:发育过程中膜相关驱动蛋白的激活

Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.

作者信息

Lane J D, Allan V J

机构信息

School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.

出版信息

Mol Biol Cell. 1999 Jun;10(6):1909-22. doi: 10.1091/mbc.10.6.1909.

Abstract

The endoplasmic reticulum (ER) in animal cells uses microtubule motor proteins to adopt and maintain its extended, reticular organization. Although the orientation of microtubules in many somatic cell types predicts that the ER should move toward microtubule plus ends, motor-dependent ER motility reconstituted in extracts of Xenopus laevis eggs is exclusively a minus end-directed, cytoplasmic dynein-driven process. We have used Xenopus egg, embryo, and somatic Xenopus tissue culture cell (XTC) extracts to study ER motility during embryonic development in Xenopus by video-enhanced differential interference contrast microscopy. Our results demonstrate that cytoplasmic dynein is the sole motor for microtubule-based ER motility throughout the early stages of development (up to at least the fifth embryonic interphase). When egg-derived ER membranes were incubated in somatic XTC cytosol, however, ER tubules moved in both directions along microtubules. Data from directionality assays suggest that plus end-directed ER tubule extensions contribute approximately 19% of the total microtubule-based ER motility under these conditions. In XTC extracts, the rate of ER tubule extensions toward microtubule plus ends is lower ( approximately 0.4 microm/s) than minus end-directed motility ( approximately 1.3 microm/s), and plus end-directed motility is eliminated by a function-blocking anti-conventional kinesin heavy chain antibody (SUK4). In addition, we provide evidence that the initiation of plus end-directed ER motility in somatic cytosol is likely to occur via activation of membrane-associated kinesin.

摘要

动物细胞中的内质网(ER)利用微管运动蛋白来形成并维持其延伸的网状结构。尽管在许多体细胞类型中微管的方向预示内质网应朝着微管的正端移动,但在非洲爪蟾卵提取物中重建的依赖于运动蛋白的内质网运动完全是一个由细胞质动力蛋白驱动的、朝着负端的过程。我们利用非洲爪蟾卵、胚胎以及非洲爪蟾体细胞组织培养细胞(XTC)提取物,通过视频增强微分干涉相差显微镜来研究非洲爪蟾胚胎发育过程中的内质网运动。我们的结果表明,在发育的早期阶段(至少直至胚胎第五次间期),细胞质动力蛋白是基于微管的内质网运动的唯一运动蛋白。然而,当将源自卵的内质网膜在体细胞XTC胞质溶胶中孵育时,内质网管会沿着微管双向移动。方向性分析的数据表明,在这些条件下,朝着微管正端的内质网管延伸约占基于微管的内质网总运动的19%。在XTC提取物中,内质网管朝着微管正端延伸的速率(约0.4微米/秒)低于朝着负端的运动速率(约1.3微米/秒),并且一种功能阻断性抗传统驱动蛋白重链抗体(SUK4)可消除朝着正端的运动。此外,我们提供的证据表明,在体细胞胞质溶胶中朝着正端的内质网运动的起始可能是通过膜相关驱动蛋白的激活而发生的。

相似文献

2
Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells.
J Cell Sci. 2009 Jun 15;122(Pt 12):1979-89. doi: 10.1242/jcs.041962. Epub 2009 May 19.
4
Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic.
J Cell Biol. 1995 Feb;128(3):293-306. doi: 10.1083/jcb.128.3.293.
6
Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis.
Mol Biol Cell. 2002 Mar;13(3):965-77. doi: 10.1091/mbc.01-10-0475.
8
Molecular requirements for bi-directional movement of phagosomes along microtubules.
J Cell Biol. 1997 Apr 7;137(1):113-29. doi: 10.1083/jcb.137.1.113.
9
Microtubule-associated motility in cytoplasmic extracts of sea urchin eggs.
Cell Motil Cytoskeleton. 1993;24(3):167-78. doi: 10.1002/cm.970240304.

引用本文的文献

1
Episodic transport of protein aggregates achieves a positive size selectivity in aggresome formation.
Nat Commun. 2025 Aug 22;16(1):7852. doi: 10.1038/s41467-025-62751-5.
2
CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202411034. Epub 2025 Jul 10.
3
CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization.
bioRxiv. 2024 Nov 6:2024.11.06.622207. doi: 10.1101/2024.11.06.622207.
4
Making the connection: How membrane contact sites have changed our view of organelle biology.
Cell. 2024 Jan 18;187(2):257-270. doi: 10.1016/j.cell.2023.11.040.
5
The interconnection of endoplasmic reticulum and microtubule and its implication in Hereditary Spastic Paraplegia.
Comput Struct Biotechnol J. 2023 Feb 20;21:1670-1677. doi: 10.1016/j.csbj.2023.02.025. eCollection 2023.
7
Tubulin Isotypes: Emerging Roles in Defining Cancer Stem Cell Niche.
Front Immunol. 2022 May 26;13:876278. doi: 10.3389/fimmu.2022.876278. eCollection 2022.
9
Network organisation and the dynamics of tubules in the endoplasmic reticulum.
Sci Rep. 2021 Aug 10;11(1):16230. doi: 10.1038/s41598-021-94901-2.

本文引用的文献

1
Direct interaction of microtubule- and actin-based transport motors.
Nature. 1999 Jan 21;397(6716):267-70. doi: 10.1038/16722.
3
A novel direct interaction of endoplasmic reticulum with microtubules.
EMBO J. 1998 Nov 2;17(21):6168-77. doi: 10.1093/emboj/17.21.6168.
4
Transport of ER vesicles on actin filaments in neurons by myosin V.
J Cell Sci. 1998 Nov;111 ( Pt 21):3221-34. doi: 10.1242/jcs.111.21.3221.
6
Organelle motility and membrane network formation in metaphase and interphase cell-free extracts.
Methods Enzymol. 1998;298:339-53. doi: 10.1016/s0076-6879(98)98030-2.
7
Microtubule-based membrane movement.
Biochim Biophys Acta. 1998 Jun 29;1376(1):27-55. doi: 10.1016/s0304-4157(97)00010-5.
10
Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein.
J Cell Biol. 1998 Apr 6;141(1):51-9. doi: 10.1083/jcb.141.1.51.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验