Suppr超能文献

青蛙两栖乳头体中听觉毛细胞的电特性。

The electrical properties of auditory hair cells in the frog amphibian papilla.

作者信息

Smotherman M S, Narins P M

机构信息

Department of Physiological Science, The University of California, Los Angeles, California 90095-1527, USA.

出版信息

J Neurosci. 1999 Jul 1;19(13):5275-92. doi: 10.1523/JNEUROSCI.19-13-05275.1999.

Abstract

The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

摘要

两栖乳头(AP)是青蛙的主要听觉器官。解剖学和神经生理学证据表明,这个听觉器官利用了机械和电(基于毛细胞)频率调谐机制,但对AP毛细胞的电生理学了解相对较少。我们使用全细胞膜片钳技术,研究了沿AP头尾轴分离的毛细胞的电特性和离子电流。在从AP头侧和中间区域采集的毛细胞的电压响应中观察到电共振,但在尾侧区域未观察到。在每个毛细胞中都观察到两种离子电流,即ICa和IK(Ca);然而,它们的幅度沿上皮细胞有很大变化。只有头侧毛细胞表现出失活钾电流(IA),而内向整流钾电流(IK1)仅在尾侧AP毛细胞中被识别。电调谐毛细胞的共振频率为50至375Hz,这与毛细胞位置和乳头的音频定位组织密切相关。外向电流动力学的变化对共振频率的确定有很大贡献。ICa和IK(Ca)幅度随共振频率增加,随着共振频率增加膜时间常数减小。我们得出结论,存在一个音频定位组织的毛细胞基质来支持青蛙两栖乳头头内侧区域的电调谐,并且频率确定的细胞机制与另一个电调谐听觉器官——龟基底乳头所报道的机制非常相似。

相似文献

1
The electrical properties of auditory hair cells in the frog amphibian papilla.
J Neurosci. 1999 Jul 1;19(13):5275-92. doi: 10.1523/JNEUROSCI.19-13-05275.1999.
2
Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
J Physiol. 1996 Dec 1;497 ( Pt 2)(Pt 2):395-412. doi: 10.1113/jphysiol.1996.sp021776.
3
Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla.
Hear Res. 2001 Jun;156(1-2):81-94. doi: 10.1016/s0378-5955(01)00269-6.
4
Potassium currents in auditory hair cells of the frog basilar papilla.
Hear Res. 1999 Jun;132(1-2):117-30. doi: 10.1016/s0378-5955(99)00047-7.
5
Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells.
J Physiol. 2001 Oct 1;536(Pt 1):49-65. doi: 10.1111/j.1469-7793.2001.00049.x.
7
Tonotopic variations of calcium signalling in turtle auditory hair cells.
J Physiol. 2000 Apr 15;524 Pt 2(Pt 2):423-36. doi: 10.1111/j.1469-7793.2000.00423.x.
8
Effect of temperature on electrical resonance in leopard frog saccular hair cells.
J Neurophysiol. 1998 Jan;79(1):312-21. doi: 10.1152/jn.1998.79.1.312.
9
Potassium currents in hair cells isolated from the cochlea of the chick.
J Physiol. 1990 Oct;429:529-51. doi: 10.1113/jphysiol.1990.sp018271.
10
Inwardly rectifying currents of saccular hair cells from the leopard frog.
J Neurophysiol. 1995 Apr;73(4):1484-502. doi: 10.1152/jn.1995.73.4.1484.

引用本文的文献

2
Comparative study of ionic currents and exocytosis in hair cells of the basilar and amphibian papilla in bullfrogs.
Front Cell Neurosci. 2023 Jan 9;16:1064886. doi: 10.3389/fncel.2022.1064886. eCollection 2022.
3
DPOAEs and tympanal membrane vibrations reveal adaptations of the sexually dimorphic ear of the concave-eared torrent frog, Odorrana tormota.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jan;209(1):79-88. doi: 10.1007/s00359-022-01569-8. Epub 2022 Sep 15.
5
Atypical tuning and amplification mechanisms in gecko auditory hair cells.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2122501119. doi: 10.1073/pnas.2122501119. Epub 2022 Mar 15.
6
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea.
Trends Neurosci. 2020 Feb;43(2):88-102. doi: 10.1016/j.tins.2019.12.003. Epub 2020 Jan 15.
7
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
J Neurosci. 2019 Sep 11;39(37):7260-7276. doi: 10.1523/JNEUROSCI.2510-18.2019. Epub 2019 Jul 17.
8
Sensory Hair Cells: An Introduction to Structure and Physiology.
Integr Comp Biol. 2018 Aug 1;58(2):282-300. doi: 10.1093/icb/icy064.
9
Soft Tissue Conduction: Review, Mechanisms, and Implications.
Trends Hear. 2017 Jan-Dec;21:2331216517734087. doi: 10.1177/2331216517734087.

本文引用的文献

1
Potassium currents in auditory hair cells of the frog basilar papilla.
Hear Res. 1999 Jun;132(1-2):117-30. doi: 10.1016/s0378-5955(99)00047-7.
2
Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation.
J Neurosci. 1998 Apr 15;18(8):2962-73. doi: 10.1523/JNEUROSCI.18-08-02962.1998.
3
Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
J Physiol. 1996 Dec 1;497 ( Pt 2)(Pt 2):395-412. doi: 10.1113/jphysiol.1996.sp021776.
4
High-conductance calcium-activated potassium channels; structure, pharmacology, and function.
J Bioenerg Biomembr. 1996 Jun;28(3):255-67. doi: 10.1007/BF02110699.
5
Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells.
Biophys J. 1996 Jul;71(1):430-42. doi: 10.1016/S0006-3495(96)79245-7.
6
One-tone suppression in the frog auditory nerve.
J Acoust Soc Am. 1996 Jul;100(1):451-7. doi: 10.1121/1.415872.
7
Two types of calcium channels in bullfrog saccular hair cells.
Hear Res. 1995 Jul;87(1-2):62-8. doi: 10.1016/0378-5955(95)00079-j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验