Suppr超能文献

抑制剂结合的动力学机制:与快速起效的慢结合模式的相关性。

Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm.

作者信息

Falk S, Oulianova N, Berteloot A

机构信息

Membrane Transport Research Group, Department of Physiology, Faculty of Medicine, Université de Montréal, CP 6128, succursale Centre-Ville, Montreal, Québec H3C 3J7, Canada.

出版信息

Biophys J. 1999 Jul;77(1):173-88. doi: 10.1016/S0006-3495(99)76880-3.

Abstract

Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha's formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A-C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors. However, slow-binding inhibition according to mechanism A may not be compatible with a fast-acting behavior on the steady-state time scale of a few seconds. We conclude that the recruitment hypothesis (mechanism C) cannot account for slow phlorizin binding to the sodium-coupled glucose transport protein(s), and that mechanism B is the only alternative that may explain the fast-acting slow-binding paradigm.

摘要

尽管根皮苷对钠-葡萄糖共转运的抑制作用在几秒钟内即可发生,但3H-根皮苷与钠偶联葡萄糖转运蛋白的结合需要几分钟才能达到平衡(快速起效的慢结合模式)。使用根据查氏形式主义可简化为双态图的任意维度动力学模型,我们表明可以识别出抑制剂结合的三种基本机制,其中抑制剂结合步骤要么(A)代表、(B)先于、要么(C)跟随结合反应中的限速步骤。我们证明机制A-C中的每一种都与一组独特的动力学特性相关,并且预期观察到机制C的时间尺度受催化循环周转数的制约。相比之下,机制A和B可能与快速起效或慢结合抑制剂都相关。然而,根据机制A的慢结合抑制在几秒钟的稳态时间尺度上可能与快速起效行为不兼容。我们得出结论,募集假说(机制C)无法解释根皮苷与钠偶联葡萄糖转运蛋白的慢结合,并且机制B是唯一可能解释快速起效的慢结合模式的替代方案。

相似文献

1
Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm.
Biophys J. 1999 Jul;77(1):173-88. doi: 10.1016/S0006-3495(99)76880-3.
2
Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney.
J Membr Biol. 2001 Feb 1;179(3):223-42. doi: 10.1007/s002320010049.
6
Phlorizin, a competitive inhibitor of glucose transport, facilitates memory storage in mice.
Neurobiol Learn Mem. 1999 Jan;71(1):104-12. doi: 10.1006/nlme.1998.3856.
8
Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
J Membr Biol. 2003 Mar 15;192(2):89-100. doi: 10.1007/s00232-002-1066-9.
9
Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.
Biophys J. 1998 Feb;74(2 Pt 1):816-30. doi: 10.1016/S0006-3495(98)74006-8.

引用本文的文献

1
Targeting the major pro-inflammatory interleukin-6-type cytokine receptor gp130 by antagonistic single domain antibodies.
Front Immunol. 2025 Aug 15;16:1613004. doi: 10.3389/fimmu.2025.1613004. eCollection 2025.
2
The actual ionic nature of the leak current through the Na+/glucose cotransporter SGLT1.
Biophys J. 2010 Jan 20;98(2):231-9. doi: 10.1016/j.bpj.2009.10.015.
3
Effect of substrate on the pre-steady-state kinetics of the Na(+)/glucose cotransporter.
Biophys J. 2007 Jan 15;92(2):461-72. doi: 10.1529/biophysj.106.092296. Epub 2006 Oct 27.

本文引用的文献

1
Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.
Biophys J. 1998 Feb;74(2 Pt 1):816-30. doi: 10.1016/S0006-3495(98)74006-8.
2
Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter.
Biophys J. 1997 Nov;73(5):2503-10. doi: 10.1016/S0006-3495(97)78278-X.
3
Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1).
J Membr Biol. 1997 Jan 15;155(2):175-86. doi: 10.1007/s002329900169.
4
Slow-binding inhibition: the general case.
Biochim Biophys Acta. 1996 Nov 14;1298(1):78-86. doi: 10.1016/s0167-4838(96)00118-5.
7
The intestinal Na+/glucose cotransporter.
Annu Rev Physiol. 1993;55:575-89. doi: 10.1146/annurev.ph.55.030193.003043.
8
Hysteretic enzymes.
Methods Enzymol. 1980;64:192-226. doi: 10.1016/s0076-6879(80)64010-5.
9
Testing carrier models of cotransport using the binding kinetics of non-transported competitive inhibitors.
Biochim Biophys Acta. 1980 Feb 28;596(2):272-91. doi: 10.1016/0005-2736(80)90361-2.
10
Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
Biochim Biophys Acta. 1982 Jun 14;688(2):557-71. doi: 10.1016/0005-2736(82)90367-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验