Suppr超能文献

基因网络架构的系统测定

Systematic determination of genetic network architecture.

作者信息

Tavazoie S, Hughes J D, Campbell M J, Cho R J, Church G M

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Nat Genet. 1999 Jul;22(3):281-5. doi: 10.1038/10343.

Abstract

Technologies to measure whole-genome mRNA abundances and methods to organize and display such data are emerging as valuable tools for systems-level exploration of transcriptional regulatory networks. For instance, it has been shown that mRNA data from 118 genes, measured at several time points in the developing hindbrain of mice, can be hierarchically clustered into various patterns (or 'waves') whose members tend to participate in common processes. We have previously shown that hierarchical clustering can group together genes whose cis-regulatory elements are bound by the same proteins in vivo. Hierarchical clustering has also been used to organize genes into hierarchical dendograms on the basis of their expression across multiple growth conditions. The application of Fourier analysis to synchronized yeast mRNA expression data has identified cell-cycle periodic genes, many of which have expected cis-regulatory elements. Here we apply a systematic set of statistical algorithms, based on whole-genome mRNA data, partitional clustering and motif discovery, to identify transcriptional regulatory sub-networks in yeast-without any a priori knowledge of their structure or any assumptions about their dynamics. This approach uncovered new regulons (sets of co-regulated genes) and their putative cis-regulatory elements. We used statistical characterization of known regulons and motifs to derive criteria by which we infer the biological significance of newly discovered regulons and motifs. Our approach holds promise for the rapid elucidation of genetic network architecture in sequenced organisms in which little biology is known.

摘要

测量全基因组mRNA丰度的技术以及整理和展示此类数据的方法,正成为用于转录调控网络系统级探索的宝贵工具。例如,研究表明,在小鼠发育中的后脑的多个时间点测量的118个基因的mRNA数据,可以被层次聚类为各种模式(或“波”),其成员往往参与共同的过程。我们之前已经表明,层次聚类可以将那些其顺式调控元件在体内被相同蛋白质结合的基因聚集在一起。层次聚类也已被用于根据基因在多种生长条件下的表达情况将其组织成层次树状图。将傅里叶分析应用于同步化的酵母mRNA表达数据,已经识别出细胞周期周期性基因,其中许多基因具有预期的顺式调控元件。在这里,我们应用一套基于全基因组mRNA数据、划分聚类和基序发现的系统统计算法,在没有关于其结构的任何先验知识或关于其动力学的任何假设的情况下,识别酵母中的转录调控子网。这种方法揭示了新的调控子(共同调控的基因集)及其假定的顺式调控元件。我们使用已知调控子和基序的统计特征来推导标准,据此推断新发现的调控子和基序的生物学意义。我们的方法有望快速阐明那些生物学知识了解甚少的已测序生物体中的遗传网络结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验