Suppr超能文献

将时间维度纳入接收者操作特征曲线:前列腺癌的案例研究

Incorporating the time dimension in receiver operating characteristic curves: a case study of prostate cancer.

作者信息

Etzioni R, Pepe M, Longton G, Hu C, Goodman G

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.

出版信息

Med Decis Making. 1999 Jul-Sep;19(3):242-51. doi: 10.1177/0272989X9901900303.

Abstract

Early diagnosis of disease has potential to reduce morbidity and mortality. Biomarkers may be useful for detecting disease at early stages before it becomes clinically apparent. Prostate-specific antigen (PSA) is one such marker for prostate cancer. This article is concerned with modeling receiver operating characteristic (ROC) curves associated with biomarkers at various times prior to the time at which the disease is detected clinically, by two methods. The first models the biomarkers statistically using mixed-effects regression models, and uses parameter estimates from these models to estimate the time-specific ROC curves. The second directly models the ROC curves as a function of time prior to diagnosis and may be implemented using software packages with binary regression or generalized linear model routines. The approaches are applied to data from 71 prostate cancer cases and 71 controls who participated in a lung cancer prevention trial. Two biomarkers for prostate cancer were considered: total serum PSA and the ratio of free to total PSA. Not surprisingly, both markers performed better as the interval between PSA measurement and clinical diagnosis decreased. Although the two markers performed similarly eight years prior to diagnosis, it appears that total PSA performed better than the ratio measure at times closer to diagnosis. The area under the ROC curve was consistently greater for total PSA than for the ratio four and two years prior to diagnosis and at the time of diagnosis.

摘要

疾病的早期诊断有可能降低发病率和死亡率。生物标志物可能有助于在疾病出现临床症状之前的早期阶段进行检测。前列腺特异性抗原(PSA)就是前列腺癌的一种这样的标志物。本文关注通过两种方法对与生物标志物相关的接受者操作特征(ROC)曲线进行建模,这些曲线是在疾病临床检测时间之前的不同时间点的。第一种方法使用混合效应回归模型对生物标志物进行统计建模,并使用这些模型的参数估计来估计特定时间的ROC曲线。第二种方法直接将ROC曲线建模为诊断前时间的函数,并且可以使用具有二元回归或广义线性模型例程的软件包来实现。这些方法应用于来自参与肺癌预防试验的71例前列腺癌病例和71例对照的数据。考虑了两种前列腺癌生物标志物:总血清PSA和游离PSA与总PSA的比值。不出所料,随着PSA测量与临床诊断之间的间隔缩短,两种标志物的表现都更好。尽管在诊断前八年两种标志物表现相似,但在更接近诊断的时间点,总PSA似乎比比值测量表现更好。在诊断前四年、两年以及诊断时,总PSA的ROC曲线下面积始终大于比值的ROC曲线下面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验