Edwards D F, Hollingsworth H, Zazulia A R, Diringer M N
Department of Neurology & Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
Neurology. 1999 Jul 22;53(2):351-7. doi: 10.1212/wnl.53.2.351.
Artificial neural network (ANN) analysis methods have led to more sensitive diagnosis of myocardial infarction and improved prediction of mortality in breast cancer, prostate cancer, and trauma patients. Prognostic studies have identified early clinical and radiographic predictors of mortality after intracerebral hemorrhage (ICH). To date, published models have not achieved the accuracy necessary for use in making decisions to limit medical interventions. We recently reported a logistic regression model that correctly classified 79% of patients who died and 90% of patients who survived. In an attempt to improve prediction of mortality we computed an ANN model with the same data.
To determine whether an ANN analysis would provide a more accurate prediction of mortality after ICH when compared with multiple logistic regression models computed using the same data.
Analyses were conducted on data collected prospectively on 81 patients with supratentorial ICH. Multiple logistic regression was used to predict hospital mortality, then an ANN analysis was applied to the same data set. Input variables were age, gender, race, hydrocephalus, mean arterial pressure, pulse pressure, Glasgow Coma Scale score, intraventricular hemorrhage, hydrocephalus, hematoma size, hematoma location (ganglionic, thalamic, or lobar), cisternal effacement, pineal shift, history of hypertension, history of diabetes, and age.
The ANN model correctly classified all patients (100%) as alive or dead compared with 85% correct classification for the logistic regression model. A second ANN verification model was equally accurate. The ANN was superior to the logistic regression model on all objective measures of fit.
ANN analysis more effectively uses information for prediction of mortality in this sample of patients with ICH. A well-validated ANN may have a role in the clinical management of ICH.
人工神经网络(ANN)分析方法已能更灵敏地诊断心肌梗死,并改善对乳腺癌、前列腺癌和创伤患者死亡率的预测。预后研究已确定脑出血(ICH)后死亡率的早期临床和影像学预测指标。迄今为止,已发表的模型尚未达到用于决定限制医疗干预措施所需的准确性。我们最近报告了一个逻辑回归模型,该模型能正确分类79%的死亡患者和90%的存活患者。为了提高死亡率预测能力,我们用相同数据计算了一个ANN模型。
确定与使用相同数据计算的多个逻辑回归模型相比,ANN分析是否能更准确地预测ICH后的死亡率。
对前瞻性收集的81例幕上ICH患者的数据进行分析。使用多元逻辑回归预测医院死亡率,然后对同一数据集应用ANN分析。输入变量包括年龄、性别、种族、脑积水、平均动脉压、脉压、格拉斯哥昏迷量表评分、脑室内出血、脑积水、血肿大小、血肿位置(神经节、丘脑或脑叶)、脑池受压、松果体移位、高血压病史、糖尿病病史和年龄。
ANN模型将所有患者正确分类为存活或死亡(100%),而逻辑回归模型的正确分类率为85%。第二个ANN验证模型同样准确。在所有拟合的客观指标上,ANN均优于逻辑回归模型。
在该ICH患者样本中,ANN分析能更有效地利用信息预测死亡率。经过充分验证的ANN可能在ICH的临床管理中发挥作用。