Suppr超能文献

大豆脂氧合酶1中氢转移的本质:初级和次级同位素效应的分离

Nature of hydrogen transfer in soybean lipoxygenase 1: separation of primary and secondary isotope effects.

作者信息

Rickert K W, Klinman J P

机构信息

Department of Chemistry, University of California, Berkeley 94720, USA.

出版信息

Biochemistry. 1999 Sep 21;38(38):12218-28. doi: 10.1021/bi990834y.

Abstract

Previous measurements of the kinetics of oxidation of linoleic acid by soybean lipoxygenase 1 have indicated very large deuterium isotope effects, but have not been able to distinguish the primary isotope effect from the alpha-secondary effect. To address this question, singly deuterated linoleic acid was prepared, and enantiomerically resolved using the enzyme itself. Noncompetitive measurements of the primary deuterium isotope effect give a value of ca. 40 which is temperature-independent. The enthalpy of activation is low and isotope-independent, and there is a large isotope effect on the Arrhenius prefactor. A very large apparent secondary isotope effect (ca. 2.1) is measured with deuterium in the primary position, but a greatly reduced value (1.1) is observed with protium in the primary position. Mutagenesis of the active site leads to a significant reduction in k(cat) and perturbed isotope effects, in particular, a secondary effect of 5.6 when deuterium is in the primary position. The anomalous secondary isotope effects are shown to arise from imperfect stereoselectivity of hydrogen abstraction which, for the mutant, is attributed to a combination of inverse substrate binding and increased flexibility at the reactive carbon. After correction, a very large primary (76-84) and small secondary (1.1-1.2) kinetic isotope effects are calculated for both mutant and wild-type enzymes. The weight of the evidence is taken to favor hydrogen tunneling as the primary mechanism of hydrogen transfer.

摘要

先前对大豆脂氧合酶1催化亚油酸氧化动力学的测量表明存在非常大的氘同位素效应,但未能区分一级同位素效应和α-二级效应。为了解决这个问题,制备了单氘代亚油酸,并利用该酶本身进行对映体拆分。对一级氘同位素效应的非竞争性测量得到的值约为40,且与温度无关。活化焓较低且与同位素无关,并且对阿仑尼乌斯前因子存在较大的同位素效应。在一级位置用氘测量到非常大的表观二级同位素效应(约2.1),但在一级位置用氢测量时观察到的值大大降低(1.1)。活性位点的诱变导致催化常数(k(cat))显著降低且同位素效应受到干扰,特别是当氘在一级位置时二级效应为5.6。结果表明,异常的二级同位素效应源于氢提取的立体选择性不完善,对于突变体而言,这归因于反向底物结合和反应性碳处灵活性增加的综合作用。校正后,计算出突变型和野生型酶的一级动力学同位素效应都非常大(76 - 84),二级动力学同位素效应都很小(1.1 - 1.2)。现有证据倾向于支持氢隧穿作为氢转移的主要机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验