Suppr超能文献

非磺酰脲类降血糖药物对异源表达的囊性纤维化跨膜传导调节因子氯离子通道的抑制作用。

Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.

作者信息

Cai Z, Lansdell K A, Sheppard D N

机构信息

Human Genetics Unit, Department of Medical Sciences, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU.

出版信息

Br J Pharmacol. 1999 Sep;128(1):108-18. doi: 10.1038/sj.bjp.0702748.

Abstract
  1. Hypoglycaemia-inducing sulphonylureas, such as glibenclamide, inhibit cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels. In search of modulators of CFTR, we investigated the effects of the non-sulphonylurea hypoglycaemic agents meglitinide, repaglinide, and mitiglinide (KAD-1229) on CFTR Cl- channels in excised inside-out membrane patches from C127 cells expressing wild-type human CFTR. 2. When added to the intracellular solution, meglitinide and mitiglinide inhibited CFTR Cl- currents with half-maximal concentrations of 164+/-19 microM and 148+/-36 microM, respectively. However, repaglinide only weakly inhibited CFTR Cl- currents. 3. To understand better how non-sulphonylurea hypoglycaemic agents inhibit CFTR, we studied single channels. Channel blockade by both meglitinide and mitiglinide was characterized by flickery closures and a significant decrease in open probability (Po). In contrast, repaglinide was without effect on either channel gating or Po, but caused a small decrease in single-channel current amplitude. 4. Analysis of the dwell time distributions of single channels indicated that both meglitinide and mitiglinide greatly decreased the open time of CFTR. Mitiglinide-induced channel closures were about 3-fold longer than those of meglitinide. 5. Inhibition of CFTR by meglitinide and mitiglinide was voltage-dependent: at positive voltages channel blockade was relieved. 6. The data demonstrate that non-sulphonylurea hypoglycaemic agents inhibit CFTR. This indicates that these agents have a wider specificity of action than previously recognized. Like glibenclamide, non-sulphonylurea hypoglycaemic agents may inhibit CFTR by occluding the channel pore and preventing Cl- permeation.
摘要
  1. 诱导低血糖的磺酰脲类药物,如格列本脲,可抑制囊性纤维化跨膜传导调节因子(CFTR)氯离子通道。为寻找CFTR的调节剂,我们研究了非磺酰脲类降糖药米格列奈、瑞格列奈和米格列奈钙(KAD - 1229)对表达野生型人CFTR的C127细胞内翻式膜片上CFTR氯离子通道的影响。2. 当添加到细胞内溶液中时,米格列奈和米格列奈钙分别以164±19微摩尔和148±36微摩尔的半数最大浓度抑制CFTR氯离子电流。然而,瑞格列奈仅微弱抑制CFTR氯离子电流。3. 为更好地理解非磺酰脲类降糖药如何抑制CFTR,我们研究了单通道。米格列奈和米格列奈钙对通道的阻断表现为闪烁关闭和开放概率(Po)显著降低。相比之下,瑞格列奈对通道门控或Po均无影响,但导致单通道电流幅度略有下降。4. 单通道驻留时间分布分析表明,米格列奈和米格列奈钙均大幅降低了CFTR的开放时间。米格列奈钙诱导的通道关闭时间比米格列奈长约3倍。5. 米格列奈和米格列奈钙对CFTR的抑制具有电压依赖性:在正电压下通道阻断解除。6. 数据表明非磺酰脲类降糖药可抑制CFTR。这表明这些药物的作用特异性比先前认识的更广。与格列本脲一样,非磺酰脲类降糖药可能通过堵塞通道孔并阻止氯离子通透来抑制CFTR。

相似文献

2
Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.
Mol Membr Biol. 2004 Jan-Feb;21(1):27-38. doi: 10.1080/09687680310001597758.
6
Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms.
Am J Physiol Cell Physiol. 2013 Oct 15;305(8):C817-28. doi: 10.1152/ajpcell.00052.2013. Epub 2013 Jun 19.
8
CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
EMBO J. 1998 Feb 16;17(4):898-908. doi: 10.1093/emboj/17.4.898.
9
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6082-7. doi: 10.1073/pnas.0902661107. Epub 2010 Mar 15.

引用本文的文献

1
The impact of sulfonylureas on diverse ion channels: an alternative explanation for the antidiabetic actions.
Front Cell Dev Biol. 2025 Jun 23;13:1528369. doi: 10.3389/fcell.2025.1528369. eCollection 2025.
2
Structural mechanisms of CFTR function and dysfunction.
J Gen Physiol. 2018 Apr 2;150(4):539-570. doi: 10.1085/jgp.201711946. Epub 2018 Mar 26.
6
Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
Pflugers Arch. 2012 Mar;463(3):405-18. doi: 10.1007/s00424-011-1035-1. Epub 2011 Dec 13.
7
Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101.
Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C67-76. doi: 10.1152/ajpcell.00225.2011. Epub 2011 Sep 21.
9
Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents.
J Membr Biol. 2004 Oct 1;201(3):139-55. doi: 10.1007/s00232-004-0712-9.
10
Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.
J Membr Biol. 2004 May 1;199(1):15-28. doi: 10.1007/s00232-004-0672-0.

本文引用的文献

2
Epithelial transport in polycystic kidney disease.
Physiol Rev. 1998 Oct;78(4):1165-91. doi: 10.1152/physrev.1998.78.4.1165.
3
Correlating structure and function in ATP-sensitive K+ channels.
Trends Neurosci. 1998 Jul;21(7):288-94. doi: 10.1016/s0166-2236(98)01225-9.
8
Chloride channels: an emerging molecular picture.
Bioessays. 1997 Feb;19(2):117-26. doi: 10.1002/bies.950190206.
10
Glibenclamide blockade of CFTR chloride channels.
Am J Physiol. 1996 Aug;271(2 Pt 1):L192-200. doi: 10.1152/ajplung.1996.271.2.L192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验