Winans K A, King D S, Rao V R, Bertozzi C R
Department of Chemistry, University of California, Berkeley, California 94720, USA.
Biochemistry. 1999 Sep 7;38(36):11700-10. doi: 10.1021/bi991247f.
Insects protect themselves against bacterial infection by secreting a battery of antimicrobial peptides into the hemolymph. Despite recent progress, important mechanistic questions, such as the precise bacterial targets, the nature of any cooperation that occurs between peptides, and the purpose of multiple peptide isoforms, remain largely unanswered. We report herein the chemical synthesis and preliminary mechanistic investigation of diptericin, an 82 residue glycopeptide that contains regions similar to two different types of antibacterial peptides. A revised, highly practical synthesis of the precursor N(alpha)-Fmoc-Thr(Ac(3)-alpha-D-GalNAc) allowed us to produce sufficient quantities of the glycopeptide for mechanistic assays. The synthetic, full-length polypeptide proved to be active in growth inhibition assays with an IC(50) of approximately 250 nM, a concentration similar to that found in the insect hemolymph. Biological analysis of diptericin fragments indicated that the main determinant of antibacterial activity lay in the C-terminal region that is similar to the attacin peptides, although the N-terminal segment, related to the proline-rich family of antibacterial peptides, augmented that activity by 100-fold. In all assays, activity appeared glycosylation independent. Circular dichroism of unglycosylated diptericin indicated that the peptide lacked structure both in plain buffer and in the presence of liposomes. Diptericin increased the permeability of the outer and inner membranes of Escherichia coli D22 cells, suggesting possible mechanisms of action. The ability to access glycopeptides of this type through chemical synthesis will facilitate further mechanistic studies.
昆虫通过向血淋巴中分泌一系列抗菌肽来保护自己免受细菌感染。尽管最近取得了进展,但一些重要的机制问题,如精确的细菌靶点、肽之间发生的任何协同作用的性质以及多种肽异构体的目的,在很大程度上仍未得到解答。我们在此报告双翅杀菌肽的化学合成及初步机制研究,双翅杀菌肽是一种含有82个残基的糖肽,其部分区域类似于两种不同类型的抗菌肽。对前体N(α)-Fmoc-Thr(Ac(3)-α-D-GalNAc)进行了改进且高度实用的合成,使我们能够制备出足够量的糖肽用于机制分析。合成的全长多肽在生长抑制试验中具有活性,IC(50)约为250 nM,这一浓度与在昆虫血淋巴中发现的浓度相似。对双翅杀菌肽片段的生物学分析表明,抗菌活性的主要决定因素在于与攻击素肽相似的C末端区域,尽管与富含脯氨酸的抗菌肽家族相关的N末端片段使该活性增强了100倍。在所有试验中,活性似乎与糖基化无关。未糖基化的双翅杀菌肽的圆二色性表明,该肽在普通缓冲液和存在脂质体的情况下均缺乏结构。双翅杀菌肽增加了大肠杆菌D22细胞外膜和内膜的通透性,提示了可能的作用机制。通过化学合成获得此类糖肽的能力将有助于进一步的机制研究。