Suppr超能文献

Flow requirements in ventricular fibrillation: An in vivo nuclear magnetic resonance analysis of the left ventricular high-energy phosphate pool.

作者信息

Angelos M G, Rath D P, Zhu H, Beckley P D, Robitaille P M

机构信息

Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Ann Emerg Med. 1999 Nov;34(5):583-8. doi: 10.1016/s0196-0644(99)70159-9.

Abstract

STUDY OBJECTIVE

We sought to determine whether flow rates of approximately 60% of normal values are sufficient to preserve the left ventricular myocardial high-energy phosphate pool during ventricular fibrillation (VF).

METHODS

Mixed-breed swine (weight 22. 4+/-2.5 kg) were anesthetized with alpha-chloralose, placed in a state of VF, and perfused with extracorporeal circulation at a target flow of 50 mL.kg(-1).min(-1). In vivo whole-wall (average of left ventricular wall) and spatially localized phosphorous-31 nuclear magnetic resonance (NMR) spectra were acquired at baseline and during VF.

RESULTS

Mean flow during VF was 58+/-20 mL.kg(-1). min(-1) (+/-SD; 95% confidence interval, 44 to 71) or about 60% of baseline cardiac output (n=13). Whole-wall adenosine triphosphate (ATP) decreased during perfused VF (P <.05), whereas creatine phosphate (CP) remained unchanged from baseline. With spatially localized NMR, the ratios of CP/ATP were similar at baseline in all layers (endocardium --> epicardium) of the left ventricular wall. However, during perfused VF, subepicardial CP/ATP ratios increased by 14% to 40% compared with baseline values, whereas subendocardial CP/ATP ratios remained unchanged (1% to 3% increase). An additional 4 animals perfused at 72+/-10 mL.kg(-1).min(-1) (+/-SD; 95% confidence interval, 56 to 92) during VF had preservation of CP and ATP levels.

CONCLUSION

Flow levels equivalent to 60% of baseline cardiac output were insufficient to maintain normal high-energy phosphate levels in the in vivo fibrillating myocardium. At this level of flow, myocardial high-energy phosphate loss is nonhomogeneous within the left ventricular wall.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验