Suppr超能文献

酿酒酵母核糖核酸酶H(35)在滞后链DNA合成过程中的RNA引物去除中发挥作用,与Rad27核酸酶协同作用时效率最高。

Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease.

作者信息

Qiu J, Qian Y, Frank P, Wintersberger U, Shen B

机构信息

Department of Cell and Tumor Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA.

出版信息

Mol Cell Biol. 1999 Dec;19(12):8361-71. doi: 10.1128/MCB.19.12.8361.

Abstract

Correct removal of RNA primers of Okazaki fragments during lagging-strand DNA synthesis is a critical process for the maintenance of genome integrity. Disturbance of this process has severe mutagenic consequences and could contribute to the development of cancer. The role of the mammalian nucleases RNase HI and FEN-1 in RNA primer removal has been substantiated by several studies. Recently, RNase H(35), the Saccharomyces cerevisiae homologue of mammalian RNase HI, was identified and its possible role in DNA replication was proposed (P. Frank, C. Braunshofer-Reiter, and U. Wintersberger, FEBS Lett. 421:23-26, 1998). This led to the possibility of moving to the genetically powerful yeast system for studying the homologues of RNase HI and FEN-1, i.e., RNase H(35) and Rad27p, respectively. In this study, we have biochemically defined the substrate specificities and the cooperative as well as independent cleavage mechanisms of S. cerevisiae RNase H(35) and Rad27 nuclease by using Okazaki fragment model substrates. We have also determined the additive and compensatory pathological effects of gene deletion and overexpression of these two enzymes. Furthermore, the mutagenic consequences of the nuclease deficiencies have been analyzed. Based on our findings, we suggest that three alternative RNA primer removal pathways of different efficiencies involve RNase H(35) and Rad27 nucleases in yeast.

摘要

在滞后链DNA合成过程中正确去除冈崎片段的RNA引物是维持基因组完整性的关键过程。该过程的紊乱会产生严重的诱变后果,并可能导致癌症的发生。多项研究证实了哺乳动物核酸酶RNase HI和FEN-1在RNA引物去除中的作用。最近,已鉴定出哺乳动物RNase HI的酿酒酵母同源物RNase H(35),并提出了其在DNA复制中的可能作用(P. Frank、C. Braunshofer-Reiter和U. Wintersberger,《欧洲生物化学学会联合会快报》421:23 - 26,1998年)。这使得有可能转向遗传上强大的酵母系统来研究RNase HI和FEN-1的同源物,即分别为RNase H(35)和Rad27p。在本研究中,我们通过使用冈崎片段模型底物,从生化角度定义了酿酒酵母RNase H(35)和Rad27核酸酶的底物特异性以及协同和独立的切割机制。我们还确定了这两种酶基因缺失和过表达的累加和补偿性病理效应。此外,还分析了核酸酶缺陷的诱变后果。基于我们的发现,我们认为在酵母中有三种不同效率的替代RNA引物去除途径涉及RNase H(35)和Rad27核酸酶。

相似文献

3
Role of calf RTH-1 nuclease in removal of 5'-ribonucleotides during Okazaki fragment processing.
Biochemistry. 1996 Jul 16;35(28):9266-77. doi: 10.1021/bi9603074.
9
Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability.
Hum Mol Genet. 1999 Nov;8(12):2263-73. doi: 10.1093/hmg/8.12.2263.

引用本文的文献

2
Structural insight into Okazaki fragment maturation mediated by PCNA-bound FEN1 and RNaseH2.
EMBO J. 2025 Jan;44(2):484-504. doi: 10.1038/s44318-024-00296-x. Epub 2024 Nov 22.
3
RTF2 controls replication repriming and ribonucleotide excision at the replisome.
Nat Commun. 2024 Mar 2;15(1):1943. doi: 10.1038/s41467-024-45947-z.
5
The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H.
Front Microbiol. 2022 Nov 21;13:1034811. doi: 10.3389/fmicb.2022.1034811. eCollection 2022.
6
Ribonucleotide incorporation into DNA during DNA replication and its consequences.
Crit Rev Biochem Mol Biol. 2021 Feb;56(1):109-124. doi: 10.1080/10409238.2020.1869175. Epub 2021 Jan 18.
8
Telomere and Subtelomere R-loops and Antigenic Variation in Trypanosomes.
J Mol Biol. 2020 Jul 10;432(15):4167-4185. doi: 10.1016/j.jmb.2019.10.025. Epub 2019 Nov 2.
9
DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in .
Genes (Basel). 2019 Feb 21;10(2):167. doi: 10.3390/genes10020167.

本文引用的文献

2
Purification of Saccharomyces cerevisiae RNase H(70) and identification of the corresponding gene.
FEBS Lett. 1999 May 7;450(3):251-6. doi: 10.1016/s0014-5793(99)00512-8.
4
Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII.
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12872-7. doi: 10.1073/pnas.95.22.12872.
5
Structure-specific DNA cleavage by 5' nucleases.
Trends Biochem Sci. 1998 Sep;23(9):331-6. doi: 10.1016/s0968-0004(98)01259-6.
8
The crystal structure of flap endonuclease-1 from Methanococcus jannaschii.
Nat Struct Biol. 1998 Aug;5(8):707-13. doi: 10.1038/1406.
9
Characterization of Schizosaccharomyces pombe Rad2 protein, a FEN-1 homolog.
Nucleic Acids Res. 1998 Aug 15;26(16):3645-50. doi: 10.1093/nar/26.16.3645.
10
Flap endonuclease homologs in archaebacteria exist as independent proteins.
Trends Biochem Sci. 1998 May;23(5):171-3. doi: 10.1016/s0968-0004(98)01199-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验