Suppr超能文献

肝脏微血管结构:深入了解门静脉高压的病理生理学

Liver microvascular architecture: an insight into the pathophysiology of portal hypertension.

作者信息

Ekataksin W, Kaneda K

机构信息

Department of Anatomy Division I, Tokyo Medical and Dental University School of Medicine, Japan.

出版信息

Semin Liver Dis. 1999;19(4):359-82. doi: 10.1055/s-2007-1007126.

Abstract

Structural adaptations in the liver to constantly receive and release a large volume of circulating blood at low pressure are present at many levels; alteration of these structures can modify flow and perturb pressure gradients. Liver growth multiplies the lobule number by a factor of 4-5 after birth. Lobule configuration conforms with observations in space division, each unit being bordered by planes; curvature will impede expansibility and retractability among units. Lobular organization with hepatocytic plates and sinusoids, being radial centrally and reticular peripherally, maximizes its reversible distensibility. Resistance sites in the portal, sinusoidal, and hepatic system are subject to species variations; real portal sphincters are photographed in the frog. Small venules are demonstrably resistive. In endothelin-1-induced rat portal hypertension, the distal segment of preterminal portal venules constricts most intensely, whereas the terminal portal venules and sinusoids are flaccid. Their pericytes and arachnocytes (stellate cells, Ito cells, retinol-storing cells), respectively, possess no effective contractile machinery. In the dog, the initial sublobular veins react with venoconstriction to many stimulations. Well-developed musculature in hepatic veins, as in man and pig, can regulate flow by junctional constriction. These histoarchitectonics provide hepatic hemodynamics with high capacitance and high compliance properties. The hepatic artery supplies oxygenated blood to five stromal compartments: peribiliary vascular plexus, portal tract interstitium, portal vein vasa vasorum, hepatic capsule, and central-sublobular-hepatic vein vasa vasorum. Its role as the nutrient vessel to the veins is established, but what influence it may have in the pathophysiology of portal hypertension awaits clarification.

摘要

肝脏在多个层面存在结构适应性变化,以在低压下持续接收和释放大量循环血液;这些结构的改变会改变血流并扰乱压力梯度。出生后肝脏生长使小叶数量增加4 - 5倍。小叶结构符合空间划分的观察结果,每个单元由平面界定;曲率会阻碍单元间的扩张性和可收缩性。肝细胞板和血窦组成的小叶组织,中央呈放射状,周边呈网状,使其可逆扩张性最大化。门静脉、血窦和肝系统中的阻力部位存在物种差异;在青蛙体内拍摄到了真正的门静脉括约肌。小静脉具有明显的阻力。在内皮素 - 1诱导的大鼠门静脉高压中,终末前门静脉的远端段收缩最为强烈,而终末门静脉和血窦则松弛。它们的周细胞和蛛形细胞(星状细胞、伊托细胞、视黄醇储存细胞)分别不具备有效的收缩机制。在狗身上,最初的小叶下静脉对多种刺激会发生静脉收缩反应。与人和猪一样,肝静脉中发达的肌肉组织可通过连接处收缩来调节血流。这些组织建筑学特征赋予肝脏血流动力学高容量和高顺应性的特性。肝动脉为五个间质腔室供应含氧血液:胆小管周围血管丛、门管间质、门静脉血管滋养管、肝包膜以及中央 - 小叶下 - 肝静脉血管滋养管。其作为静脉营养血管的作用已得到证实,但其在门静脉高压病理生理学中可能产生的影响尚待阐明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验