Caudron N, Valiron O, Usson Y, Valiron P, Job D
INSERM Unité 366, DBMS/CS, CEA/GRENOBLE, 17 rue des Martyrs, Grenoble Cedex 9, F-38054, France.
J Mol Biol. 2000 Mar 17;297(1):211-20. doi: 10.1006/jmbi.2000.3554.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.
目前由纯微管蛋白组装微管的模型涉及一个成核阶段,随后微管以恒定的聚合物数量进行伸长。微管的成核速率和伸长速率都被认为受到游离GTP - 微管蛋白浓度的紧密影响,这是一种基于质量作用定律的方式。然而,由于缺乏关于微管组装过程中微管长度和数量浓度实际测量数据的报告,这些基本假设在很大程度上仍未得到验证。在这里,我们在聚合和解聚条件下同时测量了聚合微管蛋白浓度、游离GTP - 微管蛋白浓度以及微管长度和数量浓度。与之前的工作一致,我们发现微管成核速率强烈依赖于初始GTP - 微管蛋白浓度。但我们发现微管成核在微管伸长过程中持续存在。在任何给定的初始微管蛋白 - GTP浓度下,尽管游离GTP - 微管蛋白浓度变化很大,但在聚合物组装过程中微管成核速率保持恒定。我们还发现在组装过程中微管伸长速率具有显著的恒定性。显然,微管伸长速率是聚合物所固有的,对游离GTP - 微管蛋白浓度的大幅变化不敏感。最后我们观察到,在组装后,当微管解聚到游离GTP - 微管蛋白临界浓度以下时,解聚的限速因素是微管灾难频率。在解聚过程的所有时间点,微管灾难频率与游离GTP - 微管蛋白浓度无关,但与微管成核速率一样,强烈依赖于初始游离GTP - 微管蛋白浓度。我们得出结论,微管组装和解聚的动力学在很大程度上取决于游离GTP - 微管蛋白浓度以外的因素。我们提出,其浓度随初始条件而变化的内在结构因素和内源性调节剂也是这些动力学的主要决定因素。