Pereira-Chioccola V L, Acosta-Serrano A, Correia de Almeida I, Ferguson M A, Souto-Padron T, Rodrigues M M, Travassos L R, Schenkman S
Department of Microbiologia, Imunologia e Parasitologia, UNIFESP, R. Botucatu 862 8A, São Paulo, SP, Brazil.
J Cell Sci. 2000 Apr;113 ( Pt 7):1299-307. doi: 10.1242/jcs.113.7.1299.
In the presence of sialic acid donors Trypanosoma cruzi acquires up to 10(7) sialic acid residues on its surface, in a reaction catalyzed by its unique trans-sialidase. Most of these sialic acid residues are incorporated into mucin-like glycoproteins. To further understand the biological role of parasite sialylation, we have measured the amount of mucin in this parasite. We found that both epimastigote and trypomastigote forms have the same number of mucin molecules per surface area, although trypomastigotes have less than 10% of the amount of glycoinositol phospholipids, the other major surface glycoconjugate of T. cruzi. Based on the estimated surface area of each mucin, we calculated that these molecules form a coat covering the entire trypomastigote cell. The presence of the surface coat is shown by transmission electron microscopy of Ruthenium Red-stained parasites. The coat was revealed by binding of antibodies isolated from Chagasic patients that react with high affinity to alpha-galactosyl epitopes present in the mucin molecule. When added to the trypomastigote, these antibodies cause an extensive structural perturbation of the parasite coat with formation of large blebs, ultimately leading to parasite lysis. Interestingly, lysis is decreased if the mucin coat is heavily sialylated. Furthermore, addition of MgCl2 reverses the protective effect of sialylation, suggesting that the sialic acid negative charges stabilize the surface coat. Inhibition of sialylation by anti-trans-sialidase antibodies, found in immunized animals, or human Chagasic sera, also increase killing by anti-alpha-galactosyl antibodies. Therefore, the large amounts of sialylated mucins, forming a surface coat on infective trypomastigote forms, have an important structural and protective role.
在唾液酸供体存在的情况下,克氏锥虫通过其独特的转唾液酸酶催化的反应,在其表面获得多达10⁷个唾液酸残基。这些唾液酸残基大多被整合到黏蛋白样糖蛋白中。为了进一步了解寄生虫唾液酸化的生物学作用,我们测定了这种寄生虫中黏蛋白的含量。我们发现,尽管无鞭毛体形式的克氏锥虫的糖基肌醇磷脂(克氏锥虫的另一种主要表面糖缀合物)含量不到锥鞭毛体形式的10%,但无鞭毛体和锥鞭毛体形式每单位表面积的黏蛋白分子数量相同。根据每种黏蛋白的估计表面积,我们计算出这些分子形成了一层覆盖整个锥鞭毛体细胞的外衣。通过对钌红染色的寄生虫进行透射电子显微镜观察,显示出表面外衣的存在。通过从恰加斯病患者中分离出的抗体与黏蛋白分子中存在的α-半乳糖基表位的高亲和力结合,揭示了这种外衣。当将这些抗体添加到锥鞭毛体中时,它们会导致寄生虫外衣发生广泛的结构扰动,形成大的泡状突起,最终导致寄生虫裂解。有趣的是,如果黏蛋白外衣被大量唾液酸化,裂解作用会减弱。此外,添加MgCl₂会逆转唾液酸化的保护作用,这表明唾液酸的负电荷稳定了表面外衣。在免疫动物或人类恰加斯病血清中发现的抗转唾液酸酶抗体抑制唾液酸化,也会增加抗α-半乳糖基抗体的杀伤作用。因此,大量唾液酸化的黏蛋白在感染性锥鞭毛体形式上形成表面外衣,具有重要的结构和保护作用。