Haber S N, Fudge J L, McFarland N R
Department of Neurobiology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
J Neurosci. 2000 Mar 15;20(6):2369-82. doi: 10.1523/JNEUROSCI.20-06-02369.2000.
Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.
影响多巴胺系统的疾病的临床表现包括情绪、认知和运动功能缺陷。尽管特定皮质纹状体通路的平行组织已有充分记录,但多巴胺如何整合不同皮质/基底神经节回路信息的机制尚不清楚。我们分析了一系列逆行和顺行示踪研究,以了解纹状体黑质纹状体(SNS)子回路如何在腹内侧(边缘)、中央(联合)和背外侧(运动)纹状体区域之间引导信息流。从整体来看,腹内侧纹状体投射到广泛的多巴胺能细胞,并接收相对较少的多巴胺输入。相比之下,背外侧纹状体(DLS)接收来自广泛多巴胺能细胞的输入,并对黑质(SN)有局限的输入。中央纹状体(CS)接收来自相对广泛的黑质区域的输入,并投射到该区域。每个纹状体区域的SNS投射包含黑质的三个部分:一组背侧黑质纹状体投射细胞、一个包含黑质纹状体投射细胞及其相互的纹状体黑质终末场的中央区域,以及一个接收特定纹状体黑质投射但不包含其相互的黑质纹状体投射的腹侧区域。对多个示踪实验结果的检查同时表明,不同纹状体区域之间通过中脑多巴胺能细胞形成了一个界面,该界面在区域之间形成了一个上升的螺旋。壳核影响核心,核心影响中央纹状体,中央纹状体影响背外侧纹状体。这种解剖学排列创造了一个信息流层次结构,并通过腹侧中脑为边缘/认知/运动界面提供了解剖学基础。