Suppr超能文献

具有自动拓扑变化的可变形网格用于从粗到细的三维表面提取。

Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction.

作者信息

Lachaud J O, Montanvert A

机构信息

Equipe INFODIS, laboratoire TIMC-IMAG, UMR CNRS 5525, Institut Albert Bonniot, Domaine de la Merci, La Tronche, France.

出版信息

Med Image Anal. 1999 Jun;3(2):187-207. doi: 10.1016/s1361-8415(99)80006-1.

Abstract

This work presents a generic deformable model for extracting objects from volumetric data with a coarse-to-fine approach. This model is based on a dynamic triangulated surface which alters its geometry according to internal and external constraints to perform shape recovery. A new framework for topology changes is proposed to extract complex objects: within this framework, the model dynamically adapts its topology to the geometry of its vertices according to simple distance constraints. In order to speed up the process, an algorithm of pyramid construction with any reduction factor transforms the image into a set of images with progressively higher resolutions. This organization into a hierarchy, combined with a model which can adapt its sampling to the resolution of the workspace, enables a fast estimation of the shapes included in the image. After that, the model searches for finer and finer details while relying successively on the different levels of the pyramid.

摘要

这项工作提出了一种通用的可变形模型,用于采用从粗到精的方法从体数据中提取对象。该模型基于动态三角化曲面,该曲面根据内部和外部约束改变其几何形状以进行形状恢复。提出了一种用于拓扑变化的新框架来提取复杂对象:在该框架内,模型根据简单的距离约束动态地使其拓扑适应其顶点的几何形状。为了加快处理速度,一种具有任意缩减因子的金字塔构建算法将图像转换为一组分辨率逐渐提高的图像。这种层次结构的组织,结合一个可以使其采样适应工作空间分辨率的模型,能够快速估计图像中包含的形状。之后,模型在依次依赖金字塔的不同级别时搜索越来越精细的细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验