Suppr超能文献

磷脂酰肌醇4,5 -二磷酸调节同型液泡融合的两个步骤。

Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion.

作者信息

Mayer A, Scheglmann D, Dove S, Glatz A, Wickner W, Haas A

机构信息

Friedrich-Miescher Laboratorium der Max-Planck-Gesellschaft, 72076 Tübingen, Germany.

出版信息

Mol Biol Cell. 2000 Mar;11(3):807-17. doi: 10.1091/mbc.11.3.807.

Abstract

Yeast vacuoles undergo cycles of fragmentation and fusion as part of their transmission to the daughter cell and in response to changes of nutrients and the environment. Vacuole fusion can be reconstituted in a cell free system. We now show that the vacuoles synthesize phosphoinositides during in vitro fusion. Of these phosphoinositides, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are important for fusion. Monoclonal antibodies to PI(4,5)P(2), neomycin (a phosphoinositide ligand), and phosphatidylinositol-specific phospholipase C interfere with the reaction. Readdition of PI(4, 5)P(2) restores fusion in each case. Phosphatidylinositol 3-phosphate and PI(3,5)P(2) synthesis are not required. PI(4,5)P(2) is necessary for priming, i.e., for the Sec18p (NSF)-driven release of Sec17p (alpha-SNAP), which activates the vacuoles for subsequent tethering and docking. Therefore, it represents the kinetically earliest requirement identified for vacuole fusion so far. Furthermore, PI(4,5)P(2) is required at a step that can only occur after docking but before the BAPTA sensitive step in the latest stage of the reaction. We hence propose that PI(4,5)P(2) controls two steps of vacuole fusion.

摘要

酵母液泡会经历碎片化和融合的循环过程,这是它们传递给子细胞以及对营养物质和环境变化做出反应的一部分。液泡融合可以在无细胞体系中重建。我们现在表明,液泡在体外融合过程中会合成磷酸肌醇。在这些磷酸肌醇中,磷脂酰肌醇4-磷酸和磷脂酰肌醇4,5-二磷酸(PI(4,5)P(2))对融合很重要。针对PI(4,5)P(2)的单克隆抗体、新霉素(一种磷酸肌醇配体)和磷脂酰肌醇特异性磷脂酶C会干扰该反应。在每种情况下,重新添加PI(4,5)P(2)都能恢复融合。不需要合成磷脂酰肌醇3-磷酸和PI(3,5)P(2)。PI(4,5)P(2)对于引发过程是必需的,即对于Sec18p(NSF)驱动的Sec17p(α-SNAP)的释放是必需的,Sec17p(α-SNAP)会激活液泡以便随后进行拴系和对接。因此,它代表了迄今为止确定的液泡融合在动力学上最早的要求。此外,PI(4,5)P(2)在一个只能在对接后但在反应最后阶段对BAPTA敏感的步骤之前发生的步骤中是必需的。因此,我们提出PI(4,5)P(2)控制液泡融合的两个步骤。

相似文献

1
Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion.
Mol Biol Cell. 2000 Mar;11(3):807-17. doi: 10.1091/mbc.11.3.807.
5
The docking of primed vacuoles can be reversibly arrested by excess Sec17p (alpha-SNAP).
J Biol Chem. 2000 Jul 28;275(30):22862-7. doi: 10.1074/jbc.M001447200.
6
Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms.
Annu Rev Biochem. 2000;69:247-75. doi: 10.1146/annurev.biochem.69.1.247.
8
Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion.
EMBO J. 2001 Aug 1;20(15):4035-40. doi: 10.1093/emboj/20.15.4035.
9
Homotypic vacuolar fusion mediated by t- and v-SNAREs.
Nature. 1997 May 8;387(6629):199-202. doi: 10.1038/387199a0.
10
Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16191-6. doi: 10.1073/pnas.0908694106. Epub 2009 Sep 4.

引用本文的文献

2
Spectroscopic Methods for Detecting Conformational Changes During Sec18-Lipid Interactions.
Methods Mol Biol. 2025;2887:119-132. doi: 10.1007/978-1-0716-4314-3_8.
3
Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides.
Methods Mol Biol. 2025;2887:103-117. doi: 10.1007/978-1-0716-4314-3_7.
4
Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion.
J Biol Chem. 2024 Nov;300(11):107808. doi: 10.1016/j.jbc.2024.107808. Epub 2024 Sep 21.
8
Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming.
J Biol Chem. 2019 Mar 1;294(9):3100-3116. doi: 10.1074/jbc.RA118.006552. Epub 2019 Jan 7.
9
The Participation of Regulatory Lipids in Vacuole Homotypic Fusion.
Trends Biochem Sci. 2019 Jun;44(6):546-554. doi: 10.1016/j.tibs.2018.12.003. Epub 2018 Dec 23.
10
Determination of Sec18-Lipid Interactions by Liposome-Binding Assay.
Methods Mol Biol. 2019;1860:211-220. doi: 10.1007/978-1-4939-8760-3_13.

本文引用的文献

1
Phosphoinositide 3-kinases and membrane traffic.
Trends Cell Biol. 1996 Mar;6(3):92-7. doi: 10.1016/0962-8924(96)80998-6.
2
Lipid regulators of membrane traffic through the Golgi complex.
Trends Cell Biol. 1999 May;9(5):174-9. doi: 10.1016/s0962-8924(99)01535-4.
3
The Rab5 effector EEA1 is a core component of endosome docking.
Nature. 1999 Feb 18;397(6720):621-5. doi: 10.1038/17618.
5
Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity.
Curr Biol. 1999 Jan 14;9(1):55-8. doi: 10.1016/s0960-9822(99)80048-7.
6
Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body.
Cell. 1998 Dec 11;95(6):847-58. doi: 10.1016/s0092-8674(00)81707-9.
8
Defining the functions of trans-SNARE pairs.
Nature. 1998 Dec 10;396(6711):543-8. doi: 10.1038/25069.
9
Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking.
Semin Cell Dev Biol. 1998 Oct;9(5):527-33. doi: 10.1006/scdb.1998.0255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验