Suppr超能文献

黑腹果蝇在飞行模拟器中条件定向时的操作性条件作用与经典条件作用

The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator.

作者信息

Brembs B, Heisenberg M

机构信息

Department of Genetics, Theodor-Boveri-Institute for Biosciences, 97074 Würzburg, Germany.

出版信息

Learn Mem. 2000 Mar-Apr;7(2):104-15. doi: 10.1101/lm.7.2.104.

Abstract

Ever since learning and memory have been studied experimentally, the relationship between operant and classical conditioning has been controversial. Operant conditioning is any form of conditioning that essentially depends on the animal's behavior. It relies on operant behavior. A motor output is called operant if it controls a sensory variable. The Drosophila flight simulator, in which the relevant behavior is a single motor variable (yaw torque), fully separates the operant and classical components of a complex conditioning task. In this paradigm a tethered fly learns, operantly or classically, to prefer and avoid certain flight orientations in relation to the surrounding panorama. Yaw torque is recorded and, in the operant mode, controls the panorama. Using a yoked control, we show that classical pattern learning necessitates more extensive training than operant pattern learning. We compare in detail the microstructure of yaw torque after classical and operant training but find no evidence for acquired behavioral traits after operant conditioning that might explain this difference. We therefore conclude that the operant behavior has a facilitating effect on the classical training. In addition, we show that an operantly learned stimulus is successfully transferred from the behavior of the training to a different behavior. This result unequivocally demonstrates that during operant conditioning classical associations can be formed.

摘要

自从对学习和记忆进行实验研究以来,操作性条件反射与经典条件反射之间的关系一直存在争议。操作性条件反射是任何一种本质上依赖于动物行为的条件反射形式。它依赖于操作性行为。如果一种运动输出控制着一个感觉变量,那么它就被称为操作性输出。果蝇飞行模拟器中,相关行为是单一的运动变量(偏航扭矩),它完全分离了复杂条件任务中的操作性和经典性成分。在这个范式中,一只被系住的果蝇通过操作性或经典性学习,学会相对于周围全景图偏好和避开某些飞行方向。记录偏航扭矩,在操作性模式下,偏航扭矩控制全景图。通过使用匹配对照,我们发现经典模式学习比操作性模式学习需要更广泛的训练。我们详细比较了经典训练和操作性训练后偏航扭矩的微观结构,但没有发现操作性条件反射后获得的行为特征可以解释这种差异的证据。因此,我们得出结论,操作性行为对经典训练有促进作用。此外,我们表明,一个通过操作性学习的刺激成功地从训练行为转移到了不同的行为上。这一结果明确表明,在操作性条件反射过程中可以形成经典性关联。

相似文献

2
Flexibility in a single behavioral variable of Drosophila.
Learn Mem. 2001 Jan-Feb;8(1):1-10. doi: 10.1101/lm.8.1.1.
4
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Behav Processes. 2003 Aug 29;64(1):57-70. doi: 10.1016/s0376-6357(03)00105-0.
5
Basic organization of operant behavior as revealed in Drosophila flight orientation.
J Comp Physiol A. 1991 Dec;169(6):699-705. doi: 10.1007/BF00194898.
6
The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task.
J Neurosci. 2004 Nov 3;24(44):9745-51. doi: 10.1523/JNEUROSCI.3211-04.2004.
7
Memory consolidation in Drosophila operant visual learning.
Learn Mem. 1997 Jul-Aug;4(2):205-18. doi: 10.1101/lm.4.2.205.
8
Mushroom bodies regulate habit formation in Drosophila.
Curr Biol. 2009 Aug 25;19(16):1351-5. doi: 10.1016/j.cub.2009.06.014. Epub 2009 Jul 2.
10
Double dissociation of PKC and AC manipulations on operant and classical learning in Drosophila.
Curr Biol. 2008 Aug 5;18(15):1168-71. doi: 10.1016/j.cub.2008.07.041.

引用本文的文献

1
Bold zebrafish (Danio rerio) learn faster in a classical associative learning task.
Sci Rep. 2025 May 10;15(1):16331. doi: 10.1038/s41598-025-00423-6.
3
Reward expectations direct learning and drive operant matching in .
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2221415120. doi: 10.1073/pnas.2221415120. Epub 2023 Sep 21.
4
Visual learning in tethered bees modifies flight orientation and is impaired by epinastine.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):529-539. doi: 10.1007/s00359-023-01623-z. Epub 2023 Mar 17.
5
Illusional Perspective across Humans and Bees.
Vision (Basel). 2022 May 31;6(2):28. doi: 10.3390/vision6020028.
8
9
Reward foraging task and model-based analysis reveal how fruit flies learn value of available options.
PLoS One. 2020 Oct 2;15(10):e0239616. doi: 10.1371/journal.pone.0239616. eCollection 2020.
10
Finding a place and leaving a mark in memory formation.
J Neurogenet. 2020 Mar;34(1):21-27. doi: 10.1080/01677063.2019.1706094. Epub 2019 Dec 27.

本文引用的文献

2
Relationship between visual learning/memory ability and brain cAMP level in Drosophila.
Sci China C Life Sci. 1998 Oct;41(5):503-11. doi: 10.1007/BF02882888.
3
Learning of leg position by headless insects.
Nature. 1962 Feb 17;193:697-8. doi: 10.1038/193697a0.
4
The distinction between classical and instrumental.
Can J Psychol. 1956 Sep;10(3):165-6. doi: 10.1037/h0083677.
5
The memory template in Drosophila pattern vision at the flight simulator.
Vision Res. 1999 Nov;39(23):3920-33. doi: 10.1016/s0042-6989(99)00114-5.
6
Visual space from visual motion: turn integration in tethered flying Drosophila.
Learn Mem. 1997 Nov-Dec;4(4):318-27. doi: 10.1101/lm.4.4.318.
7
Behavioral analysis of Drosophila landmark learning in the flight simulator.
Learn Mem. 1995 May-Aug;2(3-4):152-60. doi: 10.1101/lm.2.3-4.152.
8
Context generalization in Drosophila visual learning requires the mushroom bodies.
Nature. 1999 Aug 19;400(6746):753-6. doi: 10.1038/23456.
10
Memory consolidation in Drosophila operant visual learning.
Learn Mem. 1997 Jul-Aug;4(2):205-18. doi: 10.1101/lm.4.2.205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验