Greiner M, Pfeiffer D, Smith R D
Institute for Parasitology and Tropical Veterinary Medicine, Department of Tropical Veterinary Medicine and Epidemiology, Freie Universität Berlin, Königsweg, Germany.
Prev Vet Med. 2000 May 30;45(1-2):23-41. doi: 10.1016/s0167-5877(00)00115-x.
We review the principles and practical application of receiver-operating characteristic (ROC) analysis for diagnostic tests. ROC analysis can be used for diagnostic tests with outcomes measured on ordinal, interval or ratio scales. The dependence of the diagnostic sensitivity and specificity on the selected cut-off value must be considered for a full test evaluation and for test comparison. All possible combinations of sensitivity and specificity that can be achieved by changing the test's cut-off value can be summarised using a single parameter; the area under the ROC curve. The ROC technique can also be used to optimise cut-off values with regard to a given prevalence in the target population and cost ratio of false-positive and false-negative results. However, plots of optimisation parameters against the selected cut-off value provide a more-direct method for cut-off selection. Candidates for such optimisation parameters are linear combinations of sensitivity and specificity (with weights selected to reflect the decision-making situation), odds ratio, chance-corrected measures of association (e. g. kappa) and likelihood ratios. We discuss some recent developments in ROC analysis, including meta-analysis of diagnostic tests, correlated ROC curves (paired-sample design) and chance- and prevalence-corrected ROC curves.
我们回顾了诊断试验中受试者工作特征(ROC)分析的原理及实际应用。ROC分析可用于结局以有序、区间或比率尺度衡量的诊断试验。为了全面评估试验和比较不同试验,必须考虑诊断敏感性和特异性对所选临界值的依赖性。通过改变试验临界值所能实现的敏感性和特异性的所有可能组合,可用一个参数概括,即ROC曲线下面积。ROC技术还可用于根据目标人群的给定患病率以及假阳性和假阴性结果的成本比来优化临界值。然而,将优化参数绘制成相对于所选临界值的图,可为临界值选择提供更直接的方法。此类优化参数的候选者包括敏感性和特异性的线性组合(权重选择以反映决策情况)、比值比、关联的机会校正测量指标(如kappa值)以及似然比。我们讨论了ROC分析的一些最新进展,包括诊断试验的荟萃分析、相关ROC曲线(配对样本设计)以及机会和患病率校正的ROC曲线。