Pernarowski M
Department of Mathematical Sciences, Montana State University, Bozeman 59717, USA.
Bull Math Biol. 2000 Jan;62(1):101-20. doi: 10.1006/bulm.1999.0143.
A continuum model for a heterogeneous collection of excitable cells electrically coupled through gap junctions is introduced and analysed using spatial averaging, asymptotic and numerical techniques. Heterogeneity is modelled by imposing a spatial dependence on parameters which define the single cell model and a diffusion term is used to model the gap junction coupling. For different parameter values, single cell models can exhibit bursting, beating and a myriad of other complex oscillations. A procedure for finding asymptotic estimates of the thresholds between these (synchronous) behaviors in the cellular aggregates is described for the heterogeneous case where the coupling strength is strong. This procedure is tested on a model of a strongly coupled heterogeneous collection of bursting and beating cells. Since isolated pancreatic beta-cells have been observed to both burst and beat, this test of the spatial averaging techniques provides a possible explanation to measured discrepancies between the electrical activities of isolated beta-cells and coupled collections (islets) of beta-cells.
本文引入了一个通过间隙连接进行电耦合的可兴奋细胞异质集合的连续体模型,并使用空间平均、渐近和数值技术对其进行了分析。通过对定义单细胞模型的参数施加空间依赖性来模拟异质性,并使用扩散项来模拟间隙连接耦合。对于不同的参数值,单细胞模型可以表现出爆发、搏动以及许多其他复杂的振荡。针对耦合强度较强的异质情况,描述了一种在细胞聚集体中寻找这些(同步)行为之间阈值的渐近估计的方法。该方法在一个由爆发性和搏动性细胞组成的强耦合异质集合模型上进行了测试。由于已观察到分离的胰腺β细胞既会爆发又会搏动,因此对空间平均技术的这种测试为测量到的分离β细胞与β细胞耦合集合(胰岛)电活动之间的差异提供了一种可能的解释。