Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond JM, Haroche S
Laboratoire Kastler Brossel, Departement de Physique de l'Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Science. 2000 Jun 16;288(5473):2024-8. doi: 10.1126/science.288.5473.2024.
After quantum particles have interacted, they generally remain in an entangled state and are correlated at a distance by quantum-mechanical links that can be used to transmit and process information in nonclassical ways. This implies programmable sequences of operations to generate and analyze the entanglement of complex systems. We have demonstrated such a procedure for two atoms and a single-photon cavity mode, engineering and analyzing a three-particle entangled state by a succession of controlled steps that address the particles individually. This entangling procedure can, in principle, operate on larger numbers of particles, opening new perspectives for fundamental tests of quantum theory.
量子粒子相互作用后,通常会保持纠缠状态,并通过量子力学联系在一定距离上相互关联,这些联系可用于以非经典方式传输和处理信息。这意味着可以通过可编程的操作序列来生成和分析复杂系统的纠缠态。我们已经展示了针对两个原子和一个单光子腔模的此类过程,通过一系列分别作用于这些粒子的受控步骤来构建和分析一个三粒子纠缠态。原则上,这种纠缠过程可以作用于更多数量的粒子,为量子理论的基础测试开辟了新的前景。