Suppr超能文献

使用PROSPECT进行蛋白质穿线法:设计与评估

Protein threading using PROSPECT: design and evaluation.

作者信息

Xu Y, Xu D

机构信息

Computational Biosciences Section, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830-6480, USA.

出版信息

Proteins. 2000 Aug 15;40(3):343-54.

Abstract

The computer system PROSPECT for the protein fold recognition using the threading method is described and evaluated in this article. For a given target protein sequence and a template structure, PROSPECT guarantees to find a globally optimal threading alignment between the two. The scoring function for a threading alignment employed in PROSPECT consists of four additive terms: i) a mutation term, ii) a singleton fitness term, iii) a pairwise-contact potential term, and iv) alignment gap penalties. The current version of PROSPECT considers pair contacts only between core (alpha-helix or beta-strand) residues and alignment gaps only in loop regions. PROSPECT finds a globally optimal threading efficiently when pairwise contacts are considered only between residues that are spatially close (7 A or less between the C(beta) atoms in the current implementation). On a test set consisting of 137 pairs of target-template proteins, each pair being from the same superfamily and having sequence identity </= 30%, PROSPECT recognizes 69% of the templates correctly and aligns 66% of the structurally alignable residues correctly. These numbers may be compared with the 55% fold recognition and 64% alignment accuracy for the same test set using only scoring terms i), ii), and (iv), indicating the significant contribution from the contact term. The fold recognition and alignment accuracy are further improved to 72% and 74%, respectively, when the secondary structure information predicted by the PHD program is used in scoring. PROSPECT also allows a user to incorporate constraints about a target protein, e.g., disulfide bonds, active sites, and NOE distance restraints, into the threading process. The system rigorously finds a globally optimal threading under the specified constraints. Test results have shown that the constraints can further improve the performance of PROSPECT. Proteins 2000;40:343-354.

摘要

本文介绍并评估了使用穿线法进行蛋白质折叠识别的计算机系统PROSPECT。对于给定的目标蛋白质序列和模板结构,PROSPECT保证能找到两者之间的全局最优穿线比对。PROSPECT中用于穿线比对的评分函数由四个相加项组成:i)突变项,ii)单残基适应度项,iii)成对接触势项,以及iv)比对空位罚分。PROSPECT的当前版本仅考虑核心(α螺旋或β链)残基之间的成对接触,且仅在环区考虑比对空位。当仅考虑空间上接近的残基(在当前实现中,Cβ原子之间距离为7埃或更小)之间的成对接触时,PROSPECT能高效地找到全局最优穿线。在一个由137对目标-模板蛋白质组成的测试集上,每对蛋白质来自同一个超家族且序列同一性≤30%,PROSPECT能正确识别69%的模板,并正确比对66%的可结构比对残基。将这些数字与仅使用评分项i)、ii)和(iv)时同一测试集的55%的折叠识别率和64%的比对准确率相比较,表明接触项有显著贡献。当在评分中使用PHD程序预测的二级结构信息时,折叠识别率和比对准确率分别进一步提高到72%和74%。PROSPECT还允许用户将关于目标蛋白质的约束条件,例如二硫键、活性位点和NOE距离限制,纳入穿线过程。该系统能在指定约束条件下严格找到全局最优穿线。测试结果表明,这些约束条件能进一步提高PROSPECT的性能。《蛋白质2000》;40:343 - 354。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验