Nelson B A, Robinson K A, Buse M G
Department of Medicine, Medical University of South Carolina, Charleston 29425, USA.
Diabetes. 2000 Jun;49(6):981-91. doi: 10.2337/diabetes.49.6.981.
Sustained hyperglycemia induces insulin resistance, but the mechanism is still incompletely understood. Glucosamine (GlcN) has been extensively used to model the role of the hexosamine synthesis pathway (HSP) in glucose-induced insulin resistance. 3T3-L1 adipocytes were preincubated for 18 h in media +/- 0.6 nmol/l insulin containing either low glucose (5 mmol/l), low glucose plus GlcN (0.1-2.5 mmol/l), or high glucose (25 mmol/l). Basal and acute insulin-stimulated (100 nmol/l) glucose transport was measured after re-equilibration in serum and insulin-free media. Preincubation with high glucose or GlcN (1-2.5 mmol/l) inhibited basal and acute insulin-stimulated glucose transport only if insulin was present during preincubation. However, only preincubation with GlcN plus insulin inhibited insulin-stimulated GLUT4 translocation. GLUT4 and GLUT1 protein expression were not affected. GlcN (2.5 mmol/l) increased cellular UDP-N-acetylhexosamines (UDP-HexNAc) by 400 and 900% without or with insulin, respectively. High glucose plus insulin increased UDP-HexNAc by 30%. GlcN depleted UDP-hexoses, whereas high glucose plus insulin increased them. Preincubation with 0.5 mmol/l GlcN plus insulin maximally increased UDP-HexNAc without affecting insulin-stimulated or basal glucose transport. GlcN plus insulin (but not high glucose plus insulin) caused marked GlcN dose-dependent accumulation of GlcN-6-phosphate, which correlated with insulin resistance of glucose transport (r = 0.935). GlcN plus insulin (but not high glucose plus insulin) decreased ATP (10-30%) and UTP (>50%). GTP was not measured, but GDP increased. Neither high glucose plus insulin nor GlcN plus insulin prevented acute insulin stimulation (approximately 20-fold) of insulin receptor substrate 1-associated phosphatidylinositol (PI)-3 kinase. We have come to the following conclusions. 1) Chronic exposure to high glucose or GlcN in the presence of low insulin caused insulin resistance of glucose transport by different mechanisms. 2) GlcN inhibited GLUT4 translocation, whereas high glucose impaired GLUT4 "intrinsic activity" or membrane intercalation. 3) Both agents may act distally to PI-3 kinase. 4) GlcN has metabolic effects not shared by high glucose. GlcN may not model HSP appropriately, at least in 3T3-L1 adipocytes.
持续性高血糖会诱发胰岛素抵抗,但其机制仍未完全明确。氨基葡萄糖(GlcN)已被广泛用于模拟己糖胺合成途径(HSP)在葡萄糖诱导的胰岛素抵抗中的作用。将3T3-L1脂肪细胞在含有低葡萄糖(5 mmol/l)、低葡萄糖加GlcN(0.1 - 2.5 mmol/l)或高葡萄糖(25 mmol/l)的培养基中预孵育18小时,培养基中胰岛素浓度为±0.6 nmol/l。在血清和无胰岛素培养基中重新平衡后,测量基础和急性胰岛素刺激(100 nmol/l)下的葡萄糖转运。仅在预孵育期间存在胰岛素时,高葡萄糖或GlcN(1 - 2.5 mmol/l)预孵育才会抑制基础和急性胰岛素刺激的葡萄糖转运。然而,只有GlcN加胰岛素预孵育会抑制胰岛素刺激的GLUT4转位。GLUT4和GLUT1蛋白表达未受影响。GlcN(2.5 mmol/l)在无胰岛素或有胰岛素时分别使细胞UDP-N-乙酰己糖胺(UDP-HexNAc)增加400%和900%。高葡萄糖加胰岛素使UDP-HexNAc增加30%。GlcN消耗UDP-己糖,而高葡萄糖加胰岛素则使其增加。0.5 mmol/l GlcN加胰岛素预孵育可最大程度增加UDP-HexNAc,而不影响胰岛素刺激或基础葡萄糖转运。GlcN加胰岛素(而非高葡萄糖加胰岛素)导致GlcN-6-磷酸显著的GlcN剂量依赖性积累,这与葡萄糖转运的胰岛素抵抗相关(r = 0.935)。GlcN加胰岛素(而非高葡萄糖加胰岛素)使ATP降低(10 - 30%),UTP降低(>50%)。未测量GTP,但GDP增加。高葡萄糖加胰岛素和GlcN加胰岛素均未阻止胰岛素受体底物1相关磷脂酰肌醇(PI)-3激酶的急性胰岛素刺激(约20倍)。我们得出以下结论。1)在低胰岛素存在下,长期暴露于高葡萄糖或GlcN通过不同机制导致葡萄糖转运的胰岛素抵抗。2)GlcN抑制GLUT4转位,而高葡萄糖损害GLUT4的“内在活性”或膜插入。3)两种药物可能在PI-3激酶的远端起作用。4)GlcN具有高葡萄糖不具备的代谢效应。至少在3T3-L1脂肪细胞中,GlcN可能无法恰当地模拟HSP。