Tsantrizos A, Baramki H G, Zeidman S, Steffen T
Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada.
Spine (Phila Pa 1976). 2000 Aug 1;25(15):1899-907. doi: 10.1097/00007632-200008010-00007.
Human cadaveric study on initial segmental stability and compressive strength of posterior lumbar interbody fusion implants.
To compare the initial segmental stability and compressive strength of a posterior lumbar interbody fusion construct using a new cortical bone spacer machined from allograft to that of titanium threaded and nonthreaded posterior lumbar interbody fusion cages, tested as stand-alone and with supplemental pedicle screw fixation.
Cages were introduced to overcome the limitations of conventional allografts. Radiodense cage materials impede radiographic assessment of the fusion, however, and may cause stress shielding of the graft.
Multisegmental specimens were tested intact, with posterior lumbar interbody fusion implants inserted into the L4/L5 interbody space and with supplemental pedicle screw fixation. Three posterior lumbar interbody fusion implant constructs (Ray Threaded Fusion Cage, Contact Fusion Cage, and PLIF Allograft Spacer) were tested nondestructively in axial rotation, flexion-extension, and lateral bending. The implant-specimen constructs then were isolated and compressed to failure. Changes in the neutral zone, range of motion, yield strength, and ultimate compressive strength were analyzed.
None of the stand-alone implant constructs reduced the neutral zone. Supplemental pedicle screw fixation decreased the neutral zone in flexion-extension and lateral bending. Stand-alone implant constructs decreased the range of motion in flexion and lateral bending. Differences in the range of motion between stand-alone cage constructs were found in flexion and extension (marginally significant). Supplemental posterior fixation further decreased the range of motion in all loading directions with no differences between implant constructs. The Contact Fusion Cage and PLIF Allograft Spacer constructs had a higher ultimate compressive strength than the Ray Threaded Fusion Cage.
The biomechanical data did not suggest any implant construct to behave superiorly either as a stand-alone or with supplemental posterior fixation. The PLIF Allograph Spacer is biomechanically equivalent to titanium cages but is devoid of the deficiencies associated with other cage technologies. Therefore, the PLIF Allograft Spacer is a valid alternative to conventional cages.
关于腰椎后路椎间融合植入物初始节段稳定性和抗压强度的人体尸体研究。
比较使用同种异体骨加工而成的新型皮质骨间隔器的腰椎后路椎间融合结构与钛制带螺纹和不带螺纹的腰椎后路椎间融合器的初始节段稳定性和抗压强度,分别测试其单独使用及联合椎弓根螺钉固定的情况。
椎间融合器被用于克服传统同种异体骨移植的局限性。然而,具有放射性的椎间融合器材料会妨碍对融合情况的影像学评估,并且可能导致移植骨的应力遮挡。
对多节段标本进行完整测试,将腰椎后路椎间融合植入物植入L4/L5椎间间隙,并进行联合椎弓根螺钉固定。对三种腰椎后路椎间融合植入物结构(Ray带螺纹融合器、Contact融合器和PLIF同种异体骨间隔器)进行轴向旋转、屈伸和侧方弯曲的无损测试。然后将植入物 - 标本结构分离并压缩直至破坏。分析中性区、活动范围、屈服强度和极限抗压强度的变化。
单独使用的植入物结构均未减小中性区。联合椎弓根螺钉固定可减小屈伸和侧方弯曲时的中性区。单独使用的植入物结构可减小屈伸和侧方弯曲时的活动范围。单独使用的椎间融合器结构在屈伸时的活动范围存在差异(差异不显著)。联合后路固定进一步减小了所有加载方向上的活动范围,各植入物结构之间无差异。Contact融合器和PLIF同种异体骨间隔器结构的极限抗压强度高于Ray带螺纹融合器。
生物力学数据并未表明任何一种植入物结构在单独使用或联合后路固定时表现更优。PLIF同种异体骨间隔器在生物力学上等同于钛制椎间融合器,但不存在与其他椎间融合器技术相关的缺陷。因此,PLIF同种异体骨间隔器是传统椎间融合器的有效替代品。