Suppr超能文献

冰点以下永久冻土细菌的代谢活性。

Metabolic activity of permafrost bacteria below the freezing point.

作者信息

Rivkina E M, Friedmann E I, McKay C P, Gilichinsky D A

机构信息

Department of Biological Science, Florida State University, Tallahassee 32306-1100, USA.

出版信息

Appl Environ Microbiol. 2000 Aug;66(8):3230-3. doi: 10.1128/AEM.66.8.3230-3233.2000.

Abstract

Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

摘要

在实验室中,以(14)C标记的乙酸盐掺入来自西伯利亚永久冻土(永久冻土)的天然细菌群体样本的脂质为基础,在5至-20摄氏度的温度下测量代谢活性。掺入遵循类似于生长曲线的S形模式。在所有温度下,对数期在200至350天内之后是稳定期,该稳定期一直监测到活动的第550天。最小倍增时间范围从1天(5摄氏度)到20天(-10摄氏度)到约160天(-20摄氏度)。根据培养温度,曲线在不同水平达到稳定期。我们认为,通常认为当营养物质的可用性变得有限时达到的稳定期,在我们的条件下是由永久冻土中已知存在的未冻水薄层中扩散屏障的形成引起的,其厚度取决于温度。

相似文献

1
Metabolic activity of permafrost bacteria below the freezing point.
Appl Environ Microbiol. 2000 Aug;66(8):3230-3. doi: 10.1128/AEM.66.8.3230-3233.2000.
2
Reproduction and metabolism at - 10 degrees C of bacteria isolated from Siberian permafrost.
Environ Microbiol. 2003 Apr;5(4):321-6. doi: 10.1046/j.1462-2920.2003.00419.x.
3
Microbial life in permafrost.
Adv Space Res. 2004;33(8):1215-21. doi: 10.1016/j.asr.2003.06.024.
4
Permafrost comes alive for Siberian researchers.
Science. 1999 Oct 1;286(5437):36-7. doi: 10.1126/science.286.5437.36a.
5
Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing.
Microb Ecol. 1997 May-Jun;33(3):169-79. doi: 10.1007/s002489900019.
6
Life at the freezing point.
Science. 1998 Jun 26;280(5372):2073-4. doi: 10.1126/science.280.5372.2073.
7
Preservation of cell structures in permafrost: a model for exobiology.
Adv Space Res. 1995 Mar;15(3):237-42. doi: 10.1016/s0273-1177(99)80090-8.
8
Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology.
Orig Life Evol Biosph. 1993 Feb;23(1):65-75. doi: 10.1007/BF01581991.

引用本文的文献

1
Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements.
Biology (Basel). 2025 Jul 11;14(7):847. doi: 10.3390/biology14070847.
2
Antarctic Soil and Viable Microbiota After Long-Term Storage at Constant -20 °C.
Biology (Basel). 2025 Feb 20;14(3):222. doi: 10.3390/biology14030222.
3
Metal Mobilization from Thawing Permafrost Is an Emergent Risk to Water Resources.
ACS ES T Water. 2024 Dec 10;5(1):20-32. doi: 10.1021/acsestwater.4c00789. eCollection 2025 Jan 10.
5
Microbes in porous environments: from active interactions to emergent feedback.
Biophys Rev. 2024 Apr 19;16(2):173-188. doi: 10.1007/s12551-024-01185-7. eCollection 2024 Apr.
6
Lake Erie ice is a repository of organisms.
Microbiol Resour Announc. 2024 Apr 11;13(4):e0109423. doi: 10.1128/mra.01094-23. Epub 2024 Feb 27.
8
Resource partitioning and amino acid assimilation in a terrestrial geothermal spring.
ISME J. 2023 Nov;17(11):2112-2122. doi: 10.1038/s41396-023-01517-7. Epub 2023 Sep 23.
9
Microbial responses to soil cooling might explain increases in microbial biomass in winter.
Biogeochemistry. 2023;164(3):521-535. doi: 10.1007/s10533-023-01050-x. Epub 2023 May 25.
10
Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients.
ISME J. 2023 Aug;17(8):1224-1235. doi: 10.1038/s41396-023-01429-6. Epub 2023 May 22.

本文引用的文献

1
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
4
Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert.
Appl Environ Microbiol. 1988 Apr;54(4):960-5. doi: 10.1128/aem.54.4.960-965.1988.
5
Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing.
Microb Ecol. 1997 May-Jun;33(3):169-79. doi: 10.1007/s002489900019.
6
A simple fluorometric assay for the determination of cell numbers.
J Immunol Methods. 1994 Aug 1;173(2):265-72. doi: 10.1016/0022-1759(94)90305-0.
7
Limits to life at low temperatures and at reduced water contents and water activities.
Orig Life. 1980 Jun;10(2):137-59. doi: 10.1007/BF00928665.
8
Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria.
J Bacteriol. 1968 May;95(5):1921-42. doi: 10.1128/jb.95.5.1921-1942.1968.
9
Cold adaptation of microorganisms.
Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1237):595-608, discussion 608-11. doi: 10.1098/rstb.1990.0034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验