Suppr超能文献

KdpA亚基中第232位甘氨酸被天冬氨酸取代拓宽了K⁺转运KdpFABC复合物的离子特异性。

Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.

作者信息

Schrader M, Fendler K, Bamberg E, Gassel M, Epstein W, Altendorf K, Dröse S

机构信息

Max-Planck-Institut für Biophysik, D-60596 Frankfurt am Main, Germany.

出版信息

Biophys J. 2000 Aug;79(2):802-13. doi: 10.1016/S0006-3495(00)76337-5.

Abstract

Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed.

摘要

将大肠杆菌K⁺转运KdpFABC复合物的KdpA亚基中第232位甘氨酸残基替换为天冬氨酸,会导致一种转运复合物,其对K⁺的亲和力降低,并且丧失了区分Rb⁺离子的能力(《生物化学杂志》270:6678 - 6685)。该甘氨酸残基是高度保守的GGG基序中的第一个,该基序与K⁺通道选择性过滤器(P环或H5环)的GYG序列对齐(《自然》371:119 - 122)。使用电位敏感荧光染料DiSC(3)(5)和“笼状ATP/平面双层方法”对纯化并重组的KdpFABC复合物进行的研究,证实了在全细胞摄取测量中观察到的离子特异性改变。在没有阳离子的情况下,在平面双层测量中观察到瞬态电流,这种现象先前在野生型酶和另一个kdpA突变体(A:Q116R)中也观察到,很可能代表构象转变过程中蛋白质固定电荷的移动。加入K⁺或Rb⁺后,可以观察到稳定电流,代表KdpFABC复合物的持续泵浦活性。此外,DiSC(3)(5)和平面双层测量表明,A:G232D Kdp - ATP酶也以较低速率转运Na⁺、Li⁺和H⁺。文中讨论了与K⁺通道GYG基序突变的相似性。

相似文献

7
The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
FEBS J. 2011 Sep;278(17):3041-53. doi: 10.1111/j.1742-4658.2011.08224.x. Epub 2011 Jul 22.
8
Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli.
Biochemistry. 1996 Jun 18;35(24):8009-17. doi: 10.1021/bi960175e.
9
Structure and function of the Kdp-ATPase of Escherichia coli.
Acta Physiol Scand Suppl. 1998 Aug;643:137-46.

引用本文的文献

1
Conduction pathway for potassium through the E. coli pump KdpFABC.
bioRxiv. 2025 May 6:2025.05.05.652293. doi: 10.1101/2025.05.05.652293.
2
Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC.
Nat Commun. 2021 Aug 24;12(1):5098. doi: 10.1038/s41467-021-25242-x.
3
Molecular Mechanisms for Bacterial Potassium Homeostasis.
J Mol Biol. 2021 Aug 6;433(16):166968. doi: 10.1016/j.jmb.2021.166968. Epub 2021 Mar 30.
4
The KdpFABC complex - K transport against all odds.
Mol Membr Biol. 2019 Dec;35(1):21-38. doi: 10.1080/09687688.2019.1638977.
5
Cryo-EM structures of KdpFABC suggest a K transport mechanism via two inter-subunit half-channels.
Nat Commun. 2018 Nov 26;9(1):4971. doi: 10.1038/s41467-018-07319-2.
6
Crystal structure of the potassium-importing KdpFABC membrane complex.
Nature. 2017 Jun 29;546(7660):681-685. doi: 10.1038/nature22970. Epub 2017 Jun 21.
7
Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals.
J Struct Biol. 2008 Mar;161(3):411-8. doi: 10.1016/j.jsb.2007.09.006. Epub 2007 Sep 18.
10
Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons.
Microbiol Mol Biol Rev. 2001 Sep;65(3):353-70, table of contents. doi: 10.1128/MMBR.65.3.353-370.2001.

本文引用的文献

4
Evolutionary relationship between K(+) channels and symporters.
Biophys J. 1999 Aug;77(2):775-88. doi: 10.1016/S0006-3495(99)76931-6.
6
Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli.
Biochim Biophys Acta. 1998 Dec 9;1415(1):77-84. doi: 10.1016/s0005-2736(98)00179-5.
7
Structure and function of the Kdp-ATPase of Escherichia coli.
Acta Physiol Scand Suppl. 1998 Aug;643:137-46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验