Clore G M
Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0510, USA.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9021-5. doi: 10.1073/pnas.97.16.9021.
A simple and rapid method is presented for solving the three-dimensional structures of protein-protein complexes in solution on the basis of experimental NMR restraints that provide the requisite translational (i.e., intermolecular nuclear Overhauser enhancement, NOE, data) and orientational (i.e., backbone (1)H-(15)N dipolar couplings and intermolecular NOEs) information. Providing high-resolution structures of the proteins in the unbound state are available and no significant backbone conformational changes occur upon complexation (which can readily be assessed by analysis of dipolar couplings measured on the complex), accurate and rapid docking of the two proteins can be achieved. The method, which is demonstrated for the 40-kDa complex of enzyme I and the histidine phosphocarrier protein, involves the application of rigid body minimization using a target function comprising only three terms, namely experimental NOE-derived intermolecular interproton distance and dipolar coupling restraints, and a simple intermolecular van der Waals repulsion potential. This approach promises to dramatically reduce the amount of time and effort required to solve the structures of protein-protein complexes by NMR, and to extend the capabilities of NMR to larger protein-protein complexes, possibly up to molecular masses of 100 kDa or more.
本文提出了一种简单快速的方法,可基于实验核磁共振(NMR)约束条件来解析溶液中蛋白质 - 蛋白质复合物的三维结构,这些约束条件提供了必要的平移信息(即分子间核Overhauser增强效应,NOE,数据)和取向信息(即主链(1)H - (15)N偶极耦合以及分子间NOE)。如果能获得未结合状态下蛋白质的高分辨率结构,并且在形成复合物时主链构象没有显著变化(这可以通过分析复合物上测量的偶极耦合来轻松评估),那么就可以实现两种蛋白质的准确快速对接。该方法已在酶I与组氨酸磷酸载体蛋白的40 kDa复合物上得到验证,它涉及使用仅包含三项的目标函数进行刚体最小化,这三项分别是实验性NOE衍生的分子间质子间距离和偶极耦合约束,以及一个简单的分子间范德华排斥势。这种方法有望大幅减少通过NMR解析蛋白质 - 蛋白质复合物结构所需的时间和精力,并将NMR的能力扩展到更大的蛋白质 - 蛋白质复合物,可能达到100 kDa或更大的分子量。