Levi D M, Klein S A, Sharma V, Nguyen L
University of Houston, College of Optometry, Houston, TX 77204-6052, USA.
Vision Res. 2000;40(17):2307-27. doi: 10.1016/s0042-6989(00)00087-0.
In normal foveal vision, visual space is accurately mapped from retina to cortex. However, the normal periphery, and the central field of strabismic amblyopes have elevated position discrimination thresholds, which have often been ascribed to increased 'intrinsic' spatial disorder. In the present study we evaluated the sensitivity of the human visual system (both normal and amblyopic) to spatial disorder, and asked whether there is increased 'intrinsic' topographical disorder in the amblyopic visual system. Specifically, we measured thresholds for detecting disorder (two-dimensional Gaussian position perturbations) either in a horizontal string of N equally spaced samples (Gabor patches), or in a ring of equally spaced samples over a wide range of feature separations. We also estimated both the 'equivalent intrinsic spatial disorder' and sampling efficiency using an equivalent noise approach. Our results suggest that both thresholds for detecting disorder, and equivalent intrinsic disorder depend strongly on separation, and are modestly increased in strabismic amblyopes. Strabismic amblyopes also show markedly reduced sampling efficiency. However, neither amblyopic nor peripheral vision performs like ideal or human observers with added separation-independent positional noise. Rather, the strong separation dependence suggests that the 'equivalent intrinsic disorder' may not reflect topographic disorder at all, but rather may reflect an abnormality in the amblyopes' Weber relationship.