Zewail AH
Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena, CA 91125 (USA).
Angew Chem Int Ed Engl. 2000 Aug 4;39(15):2586-2631. doi: 10.1002/1521-3773(20000804)39:15<2586::aid-anie2586>3.0.co;2-o.
Over many millennia, humankind has thought to explore phenomena on an ever shorter time scale. In this race against time, femtosecond resolution (1 fs=10(-15) s) is the ultimate achievement for studies of the fundamental dynamics of the chemical bond. Observation of the very act that brings about chemistry-the making and breaking of bonds on their actual time and length scales-is the wellspring of the field of femtochemistry, which is the study of molecular motions in the hitherto unobserved ephemeral transition states of physical, chemical, and biological changes. For molecular dynamics, achieving this atomic-scale resolution using ultrafast lasers as strobes is a triumph, just as X-ray and electron diffraction, and, more recently, STM and NMR spectroscopy, provided that resolution for static molecular structures. On the femtosecond time scale, matter wave packets (particle-type) can be created and their coherent evolution as a single-molecule trajectory can be observed. The field began with simple systems of a few atoms and has reached the realm of the very complex in isolated, mesoscopic, and condensed phases, as well as in biological systems such as proteins and DNA structures. It also offers new possibilities for the control of reactivity and for structural femtochemistry and femtobiology. This anthology gives an overview of the development of the field from a personal perspective, encompassing our research at Caltech and focusing on the evolution of techniques, concepts, and new discoveries.
在数千年的时间里,人类一直试图在越来越短的时间尺度上探索各种现象。在这场与时间的赛跑中,飞秒分辨率(1飞秒 = 10^(-15)秒)是研究化学键基本动力学的终极目标。观察引发化学反应的实际行为——化学键在其实际时间和长度尺度上的形成与断裂——是飞秒化学领域的源泉,飞秒化学研究的是物理、化学和生物变化中迄今未被观察到的短暂过渡态中的分子运动。对于分子动力学而言,使用超快激光作为频闪光源实现这种原子尺度的分辨率是一项重大成就,就如同X射线和电子衍射,以及最近的扫描隧道显微镜(STM)和核磁共振光谱(NMR)为静态分子结构提供了那样的分辨率。在飞秒时间尺度上,可以产生物质波包(粒子类型),并观察其作为单分子轨迹的相干演化。该领域始于由少数原子构成的简单系统,如今已涵盖了孤立态、介观态和凝聚态等非常复杂的领域,以及蛋白质和DNA结构等生物系统。它还为控制反应活性以及开展结构飞秒化学和飞秒生物学研究提供了新的可能性。本选集从个人视角概述了该领域的发展,涵盖了我们在加州理工学院的研究,并着重介绍了技术、概念和新发现的演变。