Wolfinger R D, Kass R E
SAS Institute, Inc., Cary, North Carolina 27513, USA.
Biometrics. 2000 Sep;56(3):768-74. doi: 10.1111/j.0006-341x.2000.00768.x.
We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.
我们从贝叶斯视角考虑用于方差分量的常见正态线性混合模型。对于共轭先验和平衡数据,吉布斯抽样易于实现;然而,对于具有可能非共轭先验的不平衡数据进行分析时,从完全条件分布中模拟可能会变得困难,从而导致人们考虑替代的马尔可夫链蒙特卡罗方法。我们提出并研究一种基于独立链的后验模拟方法。该方法是为利用方差分量模型的结构而定制的,并且适用于任意先验分布。作为默认的参考先验,我们使用基于积分(受限)似然性的杰弗里斯先验的一个版本。我们在涉及平衡和不平衡数据的常见情形中展示了这种方法的易于应用和灵活性。