Suppr超能文献

玉米Ac/Ds转座元件在酿酒酵母中的转座。

Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae.

作者信息

Weil C F, Kunze R

机构信息

Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.

出版信息

Nat Genet. 2000 Oct;26(2):187-90. doi: 10.1038/82827.

Abstract

Excision by transposons is associated with chromosome breaks; generally, host-cell proteins repair this damage, often introducing mutations. Many transposons also use host proteins in the transposition mechanism or in regulation. Transposition in systems lacking host factors that influence the behaviour of these transpositions is useful in determining what those factors are and how they work. In addition, features of transposition and regulation intrinsic to the element itself can be determined. Maize Activator/Dissociation (Ac/Ds) elements transpose in a wide variety of heterologous plants, but their characteristics in these other systems differ from those in maize, including their response to increasing genetic dosage and the types of repair products recovered following excision. Two Arabidopsis thaliana mutants (iae1 and iae2) show increased Ac transposition frequencies. These mutants, and the differences mentioned above, suggest the involvement of host proteins in Ac/Ds activity and potential differences between these proteins among plant species. Here we report that Ac/Ds elements, members of the hAT (hobo, Ac, Tam3) superfamily, transpose in the yeast Saccharomyces cerevisiae, an organism lacking class II ('cut and paste') transposons. This demonstrates that plant-specific proteins are not essential for Ac/Ds transposition. The yeast system is valuable for dissecting the Ac/Ds transposition mechanism and identifying host factors that can influence transposition and the repair of DNA damage induced by Ac/Ds. Mutations caused by Ds excision in yeast suggest formation of a DNA-hairpin intermediate, and reinsertions occur throughout the genome with a frequency similar to that in plants. The high proportion of Ac/Ds reinsertions also makes this system an in vivo mutagenesis and reverse genetics tool in yeast and, presumably, other eukaryotic systems.

摘要

转座子的切除与染色体断裂有关;通常,宿主细胞蛋白会修复这种损伤,且常常会引入突变。许多转座子在转座机制或调控过程中也会利用宿主蛋白。在缺乏影响这些转座行为的宿主因子的系统中进行转座,有助于确定这些因子是什么以及它们如何发挥作用。此外,还可以确定元件本身固有的转座和调控特征。玉米激活子/解离子(Ac/Ds)元件能在多种异源植物中转座,但其在这些其他系统中的特性与在玉米中的不同,包括它们对遗传剂量增加的反应以及切除后回收的修复产物类型。两个拟南芥突变体(iae1和iae2)显示出Ac转座频率增加。这些突变体以及上述差异表明宿主蛋白参与了Ac/Ds活性,并且这些蛋白在不同植物物种间可能存在潜在差异。在此我们报告,Ac/Ds元件属于hAT(hobo、Ac、Tam3)超家族,能在酿酒酵母中转座,酿酒酵母是一种缺乏II类(“剪切粘贴”)转座子的生物体。这表明植物特异性蛋白对于Ac/Ds转座并非必不可少。酵母系统对于剖析Ac/Ds转座机制以及鉴定能够影响转座和由Ac/Ds诱导的DNA损伤修复的宿主因子很有价值。酵母中由Ds切除引起的突变表明形成了DNA发夹中间体,并且重新插入在整个基因组中发生的频率与在植物中的相似。Ac/Ds重新插入的高比例也使该系统成为酵母以及大概其他真核系统中的体内诱变和反向遗传学工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验