Suppr超能文献

事件相关脑电位的符号动力学

Symbolic dynamics of event-related brain potentials.

作者信息

Graben P, Saddy J D, Schlesewsky M, Kurths J

机构信息

Institute of Linguistics, Universität Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5518-41. doi: 10.1103/physreve.62.5518.

Abstract

We apply symbolic dynamics techniques such as word statistics and measures of complexity to nonstationary and noisy multivariate time series of electroencephalograms (EEG) in order to estimate event-related brain potentials (ERP). Their significance against surrogate data as well as between different experimental conditions is tested. These methods are validated by simulations using stochastic dynamical systems with time-dependent control parameters and compared with traditional ERP-analysis techniques. Continuous EEG data are cut into epochs according to stimuli events presented to the subjects. These ensembles of time series can be considered as ensembles of trajectories given by some dynamical systems. We employ a statistical mechanics approach motivated by the Frobenius-Perron equation and apply it to coarse-grained symbolic descriptions of the dynamics. We develop time-dependent measures of complexity founded on running cylinder sets and show that these quantities are able to distinguish simulated data obtained by different control parameters as well as experimental data between different experimental conditions. As a first finding, our approach restores the well-known ERP components and it reveals additionally qualitative changes in the EEG that cannot be detected by means of the traditional techniques. We criticize the prerequisites of the traditional approach to ERP analysis and propose to consider ERP instead in terms of dynamical system theory and information theory.

摘要

我们将诸如词统计和复杂度度量等符号动力学技术应用于脑电图(EEG)的非平稳且有噪声的多变量时间序列,以估计事件相关脑电位(ERP)。测试了它们相对于替代数据以及不同实验条件之间的显著性。这些方法通过使用具有时间相关控制参数的随机动力系统进行模拟验证,并与传统的ERP分析技术进行比较。根据呈现给受试者的刺激事件,将连续的EEG数据切成片段。这些时间序列集合可被视为由某些动力系统给出的轨迹集合。我们采用受弗罗贝尼乌斯 - 佩龙方程启发的统计力学方法,并将其应用于动力学的粗粒度符号描述。我们基于运行柱集开发了时间相关的复杂度度量,并表明这些量能够区分由不同控制参数获得的模拟数据以及不同实验条件之间的实验数据。作为第一个发现,我们的方法恢复了众所周知的ERP成分,并且还揭示了传统技术无法检测到的EEG中的定性变化。我们批评了传统ERP分析方法的前提条件,并建议从动力系统理论和信息理论的角度来考虑ERP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验