Cummins T R, Black J A, Dib-Hajj S D, Waxman S G
Department of Neurology and Paralyzed Veterans of America and Eastern Paralyzed Veterans Association Neuroscience Research Center, Yale Medical School, New Haven, Connecticut 06510, USA.
J Neurosci. 2000 Dec 1;20(23):8754-61. doi: 10.1523/JNEUROSCI.20-23-08754.2000.
Dorsal root ganglion (DRG) neurons produce multiple sodium currents, including several different TTX-sensitive (TTX-S) currents and TTX-resistant (TTX-R) currents, which are produced by distinct sodium channels. We previously demonstrated that, after sciatic nerve transection, the levels of SNS and NaN sodium channel alpha-subunit transcripts and protein in small (18-30 micrometer diameter) DRG neurons are reduced, as are the amplitudes and densities of the slowly inactivating and persistent TTX-R currents produced by these two channels. In this study, we asked whether glial-derived neurotrophic factor (GDNF), which has been shown to prevent some axotomy-induced changes such as the loss of somatostatin expression in DRG neurons, can ameliorate the axotomy-induced downregulation of SNS and NaN TTX-R sodium channels. We show here that exposure to GDNF can significantly increase both slowly inactivating and persistent TTX-R sodium currents, which are paralleled by increases in SNS and NaN mRNA and protein levels, in axotomized DRG neurons in vitro. We also show that intrathecally administered GDNF increases the amplitudes of the slowly inactivating and persistent TTX-R currents, and SNS and NaN protein levels, in peripherally axotomized DRG neurons in vivo. Finally, we demonstrate that GDNF upregulates the persistent TTX-R current in SNS-null mice, thus demonstrating that the upregulated persistent sodium current is not produced by SNS. Because TTX-R sodium channels have been shown to be important in nociception, the effects of GDNF on axotomized DRG neurons may have important implications for the regulation of nociceptive signaling by these cells.
背根神经节(DRG)神经元产生多种钠电流,包括几种不同的对河豚毒素敏感(TTX-S)的电流和对河豚毒素耐受(TTX-R)的电流,这些电流由不同的钠通道产生。我们先前证明,坐骨神经横断后,小直径(18 - 30微米)DRG神经元中SNS和NaN钠通道α亚基转录本及蛋白水平降低,这两个通道产生的缓慢失活和持续性TTX-R电流的幅度和密度也降低。在本研究中,我们探讨了已被证明可预防某些轴突切断诱导变化(如DRG神经元中生长抑素表达丧失)的胶质细胞源性神经营养因子(GDNF)是否能改善轴突切断诱导的SNS和NaN TTX-R钠通道下调。我们在此表明,体外培养的轴突切断的DRG神经元暴露于GDNF可显著增加缓慢失活和持续性TTX-R钠电流,同时SNS和NaN mRNA及蛋白水平也相应增加。我们还表明,鞘内注射GDNF可增加体内外周轴突切断的DRG神经元中缓慢失活和持续性TTX-R电流的幅度以及SNS和NaN蛋白水平。最后,我们证明GDNF上调SNS基因敲除小鼠中的持续性TTX-R电流,从而表明上调的持续性钠电流不是由SNS产生的。由于TTX-R钠通道已被证明在伤害感受中起重要作用,GDNF对轴突切断的DRG神经元的作用可能对这些细胞调节伤害性信号传导具有重要意义。