Suppr超能文献

酿酒酵母中tRNA与rRNA合成之间的相互作用。

Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae.

作者信息

Briand J F, Navarro F, Gadal O, Thuriaux P

机构信息

Service de Biochimie et Génétique Moléculaire, CEA-Saclay, F-91191 Gif Sur Yvette Cedex, France.

出版信息

Mol Cell Biol. 2001 Jan;21(1):189-95. doi: 10.1128/MCB.21.1.189-195.2001.

Abstract

Temperature-sensitive RNA polymerase III (rpc160-112 and rpc160-270) mutants were analyzed for the synthesis of tRNAs and rRNAs in vivo, using a double-isotopic-labeling technique in which cells are pulse-labeled with [(33)P]orthophosphate and coextracted with [(3)H]uracil-labeled wild-type cells. Individual RNA species were monitored by Northern blot hybridization or amplified by reverse transcription. These mutants impaired the synthesis of RNA polymerase III transcripts with little or no influence on mRNA synthesis but also largely turned off the formation of the 25S, 18S, and 5.8S mature rRNA species derived from the common 35S transcript produced by RNA polymerase I. In the rpc160-270 mutant, this parallel inhibition of tRNA and rRNA synthesis also occurred at the permissive temperature (25 degrees C) and correlated with an accumulation of 20S pre-rRNA. In the rpc160-112 mutant, inhibition of rRNA synthesis and the accumulation of 20S pre-rRNA were found only at 37 degrees C. The steady-state rRNA/tRNA ratio of these mutants reflected their tRNA and rRNA synthesis pattern: the rpc160-112 mutant had the threefold shortage in tRNA expected from its preferential defect in tRNA synthesis at 25 degrees C, whereas rpc160-270 cells completely adjusted their rRNA/tRNA ratio down to a wild-type level, consistent with the tight coupling of tRNA and rRNA synthesis in vivo. Finally, an RNA polymerase I (rpa190-2) mutant grown at the permissive temperature had an enhanced level of pre-tRNA, suggesting the existence of a physiological coupling between rRNA synthesis and pre-tRNA processing.

摘要

利用双同位素标记技术分析了温度敏感型RNA聚合酶III(rpc160 - 112和rpc160 - 270)突变体在体内tRNA和rRNA的合成情况。在该技术中,细胞先用[³³P]正磷酸盐进行脉冲标记,然后与用[³H]尿嘧啶标记的野生型细胞共同提取。通过Northern印迹杂交监测单个RNA种类,或通过逆转录进行扩增。这些突变体损害了RNA聚合酶III转录本的合成,对mRNA合成影响很小或没有影响,但也在很大程度上关闭了由RNA聚合酶I产生的共同35S转录本衍生的25S、18S和5.8S成熟rRNA种类的形成。在rpc160 - 270突变体中,tRNA和rRNA合成的这种平行抑制在允许温度(25℃)下也会发生,并且与20S前体rRNA的积累相关。在rpc160 - 112突变体中,仅在37℃时发现rRNA合成受到抑制和20S前体rRNA的积累。这些突变体的稳态rRNA/tRNA比率反映了它们的tRNA和rRNA合成模式:rpc160 - 112突变体在25℃时由于其在tRNA合成中的优先缺陷而预期tRNA短缺三倍,而rpc160 - 270细胞将其rRNA/tRNA比率完全调整至野生型水平,这与体内tRNA和rRNA合成的紧密偶联一致。最后,在允许温度下生长的RNA聚合酶I(rpa190 - 2)突变体的前体tRNA水平升高,表明rRNA合成与前体tRNA加工之间存在生理偶联。

相似文献

1
Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae.
Mol Cell Biol. 2001 Jan;21(1):189-95. doi: 10.1128/MCB.21.1.189-195.2001.
3
Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160.
Gene. 2021 Feb 5;768:145259. doi: 10.1016/j.gene.2020.145259. Epub 2020 Oct 22.
4
A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae.
Mol Cell Biol. 1995 May;15(5):2420-8. doi: 10.1128/MCB.15.5.2420.
5
Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I.
Proc Natl Acad Sci U S A. 1991 May 1;88(9):3962-6. doi: 10.1073/pnas.88.9.3962.
8
Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing.
J Biol Chem. 2011 Nov 11;286(45):39478-88. doi: 10.1074/jbc.M111.253310. Epub 2011 Sep 22.
10
Nucleolar localization of early tRNA processing.
Genes Dev. 1998 Aug 15;12(16):2463-8. doi: 10.1101/gad.12.16.2463.

引用本文的文献

1
RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability.
RNA Biol. 2024 Jan;21(1):1-16. doi: 10.1080/15476286.2024.2381910. Epub 2024 Jul 24.
3
Regulatory networking of the three RNA polymerases helps the eukaryotic cells cope with environmental stress.
Curr Genet. 2021 Aug;67(4):595-603. doi: 10.1007/s00294-021-01179-y. Epub 2021 Mar 28.
4
Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160.
Gene. 2021 Feb 5;768:145259. doi: 10.1016/j.gene.2020.145259. Epub 2020 Oct 22.
5
Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in .
RNA. 2020 Oct;26(10):1360-1379. doi: 10.1261/rna.075507.120. Epub 2020 Jun 5.
6
Robust repression of tRNA gene transcription during stress requires protein arginine methylation.
Life Sci Alliance. 2019 Jun 3;2(3). doi: 10.26508/lsa.201800261. Print 2019 Jun.
7
Identification of factors that promote biogenesis of tRNA.
RNA Biol. 2018;15(10):1286-1294. doi: 10.1080/15476286.2018.1526539. Epub 2018 Oct 18.
9
Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I.
Mol Cell Biol. 2015 Jul;35(13):2321-31. doi: 10.1128/MCB.01499-14. Epub 2015 Apr 27.
10
The eIF4E-binding protein Eap1p functions in Vts1p-mediated transcript decay.
PLoS One. 2012;7(10):e47121. doi: 10.1371/journal.pone.0047121. Epub 2012 Oct 10.

本文引用的文献

2
Functional conservation of RNA polymerase II in fission and budding yeasts.
J Mol Biol. 2000 Feb 4;295(5):1119-27. doi: 10.1006/jmbi.1999.3399.
4
The economics of ribosome biosynthesis in yeast.
Trends Biochem Sci. 1999 Nov;24(11):437-40. doi: 10.1016/s0968-0004(99)01460-7.
5
Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway.
J Cell Biol. 1999 Jun 28;145(7):1369-80. doi: 10.1083/jcb.145.7.1369.
6
The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation.
Cold Spring Harb Symp Quant Biol. 1998;63:381-9. doi: 10.1101/sqb.1998.63.381.
7
Fractions to functions: RNA polymerase II thirty years later.
Cold Spring Harb Symp Quant Biol. 1998;63:311-7. doi: 10.1101/sqb.1998.63.311.
8
Nucleolar localization of early tRNA processing.
Genes Dev. 1998 Aug 15;12(16):2463-8. doi: 10.1101/gad.12.16.2463.
9
5S rRNA Data Bank.
Nucleic Acids Res. 1998 Jan 1;26(1):156-9. doi: 10.1093/nar/26.1.156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验