Putzer G J, Cooper D, Keehn C, Asante-Korang A, Boucek M M, Boucek R J
University of South Florida at All Children's Hospital, St. Petersburg, Florida, USA.
J Heart Lung Transplant. 2000 Dec;19(12):1166-74. doi: 10.1016/s1053-2498(00)00214-x.
The unique demands of cardiac transplantation in infancy have led to non-invasive rejection-surveillance strategies. ECHO-A is a multiparametric, two-dimensionally guided, M-mode analysis algorithm that assigns an empirically derived score for deviations of recipient parameters to age-adjusted, population-based normal values. A cumulative ECHO-A score > or =4 is highly predictive of endomyocardial biopsy Grade > or =3 and of cellular rejection.
This study determined whether modifying ECHO-A to score for deviations of recipient parameters from the recipient's baseline would improve the predictive power of ECHO-A. We reanalyzed 701 consecutive echocardiograms of 18 pediatric cardiac transplant recipients (median age at transplantation, 142 days) and based scoring on significant (Z score > or =1) deviation from the patients' baseline means (ECHO-B).
Eight episodes of treated rejection occurred during the first year after transplantation (median, 1.4 years). Approximately 10% (72) of the analyses had ECHO-A scores > or =4 that were not associated with treated rejection and were considered false positives. We identified parameters that contributed to the false-positive evaluations and calculated patient-specific baseline mean +/- standard deviation. The ECHO-B, in comparison with ECHO-A, decreased the number of false positives from 72 to 10, increased specificity from 90% to 99%, and increased the positive predictive value about 4-fold (10% to 44%). With treated rejection episodes, ECHO-B increased ECHO-A scores in 7 of 8 recipients and increased the mean score from 6 to 8.
analysis algorithm based on change from baseline improved the positive predictive power without reducing the negative predictive value of multiparametric quantitative analyses of echocardiograms following pediatric heart transplantation.
婴儿心脏移植的独特需求催生了非侵入性排斥监测策略。ECHO - A是一种多参数、二维引导的M型分析算法,它根据经验得出的分数来评估受者参数相对于年龄调整后的基于人群的正常值的偏差。累积ECHO - A评分≥4高度预测心肌内膜活检分级≥3和细胞排斥反应。
本研究确定将ECHO - A修改为根据受者参数相对于受者基线的偏差进行评分是否会提高ECHO - A的预测能力。我们重新分析了18名小儿心脏移植受者(移植时的中位年龄为142天)的701份连续超声心动图,并基于与患者基线均值的显著(Z评分≥1)偏差进行评分(ECHO - B)。
移植后第一年发生了8次经治疗的排斥反应(中位时间为1.4年)。约10%(72次)的分析中ECHO - A评分≥4,但与经治疗的排斥反应无关,被视为假阳性。我们确定了导致假阳性评估的参数,并计算了患者特异性基线均值±标准差。与ECHO - A相比,ECHO - B将假阳性数量从72次减少到10次,特异性从90%提高到99%,阳性预测值增加了约4倍(从10%提高到44%)。在经治疗的排斥反应发作时,ECHO - B使8名受者中的7名ECHO - A评分增加,平均评分从6分提高到8分。
基于与基线变化的分析算法提高了阳性预测能力,同时不降低小儿心脏移植后超声心动图多参数定量分析的阴性预测值。