Suppr超能文献

高渗胁迫后Swe1p和Hog1p对细胞周期进程的调控。

Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress.

作者信息

Alexander M R, Tyers M, Perret M, Craig B M, Fang K S, Gustin M C

机构信息

Rice University, Department of Biochemistry and Cell Biology, Houston Texas 77251, USA.

出版信息

Mol Biol Cell. 2001 Jan;12(1):53-62. doi: 10.1091/mbc.12.1.53.

Abstract

Exposure of yeast cells to an increase in external osmolarity induces a temporary growth arrest. Recovery from this stress is mediated by the accumulation of intracellular glycerol and the transcription of several stress response genes. Increased external osmolarity causes a transient accumulation of 1N and 2N cells and a concomitant depletion of S phase cells. Hypertonic stress triggers a cell cycle delay in G2 phase cells that appears distinct from the morphogenesis checkpoint, which operates in early S phase cells. Hypertonic stress causes a decrease in CLB2 mRNA, phosphorylation of Cdc28p, and inhibition of Clb2p-Cdc28p kinase activity, whereas Clb2 protein levels are unaffected. Like the morphogenesis checkpoint, the osmotic stress-induced G2 delay is dependent upon the kinase Swe1p, but is not tightly correlated with inhibition of Clb2p-Cdc28p kinase activity. Thus, deletion of SWE1 does not prevent the hypertonic stress-induced inhibition of Clb2p-Cdc28p kinase activity. Mutation of the Swe1p phosphorylation site on Cdc28p (Y19) does not fully eliminate the Swe1p-dependent cell cycle delay, suggesting that Swe1p may have functions independent of Cdc28p phosphorylation. Conversely, deletion of the mitogen-activated protein kinase HOG1 does prevent Clb2p-Cdc28p inhibition by hypertonic stress, but does not block Cdc28p phosphorylation or alleviate the cell cycle delay. However, Hog1p does contribute to proper nuclear segregation after hypertonic stress in cells that lack Swe1p. These results suggest a hypertonic stress-induced cell cycle delay in G2 phase that is mediated in a novel way by Swe1p in cooperation with Hog1p.

摘要

将酵母细胞暴露于外部渗透压增加的环境中会导致暂时的生长停滞。从这种应激状态恢复是由细胞内甘油的积累和几个应激反应基因的转录介导的。外部渗透压增加会导致1N和2N细胞短暂积累,同时S期细胞减少。高渗应激会触发G2期细胞的细胞周期延迟,这似乎与在早期S期细胞中起作用的形态发生检查点不同。高渗应激会导致CLB2 mRNA减少、Cdc28p磷酸化以及Clb2p-Cdc28p激酶活性受到抑制,而Clb2蛋白水平不受影响。与形态发生检查点一样,渗透应激诱导的G2期延迟依赖于激酶Swe1p,但与Clb2p-Cdc28p激酶活性的抑制没有紧密相关性。因此,删除SWE1并不能阻止高渗应激诱导的Clb2p-Cdc28p激酶活性抑制。Cdc28p上Swe1p磷酸化位点(Y19)的突变并不能完全消除依赖Swe1p的细胞周期延迟,这表明Swe1p可能具有独立于Cdc28p磷酸化的功能。相反,删除丝裂原活化蛋白激酶HOG1确实可以阻止高渗应激对Clb2p-Cdc28p的抑制,但不会阻止Cdc28p磷酸化或缓解细胞周期延迟。然而,在缺乏Swe1p的细胞中,Hog1p确实有助于高渗应激后正确的核分离。这些结果表明,高渗应激诱导的G2期细胞周期延迟是由Swe1p与Hog1p以一种新的方式共同介导的。

相似文献

1
Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress.
Mol Biol Cell. 2001 Jan;12(1):53-62. doi: 10.1091/mbc.12.1.53.
3
Control of Swe1p degradation by the morphogenesis checkpoint.
EMBO J. 1998 Nov 16;17(22):6678-88. doi: 10.1093/emboj/17.22.6678.
4
Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p.
Mol Biol Cell. 2001 Nov;12(11):3589-600. doi: 10.1091/mbc.12.11.3589.
5
Determinants of Swe1p degradation in Saccharomyces cerevisiae.
Mol Biol Cell. 2002 Oct;13(10):3560-75. doi: 10.1091/mbc.e02-05-0283.
6
A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint.
Nat Cell Biol. 2001 Apr;3(4):417-20. doi: 10.1038/35070104.
7
Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae.
Mol Cell Biol. 2000 Jun;20(11):4049-61. doi: 10.1128/MCB.20.11.4049-4061.2000.
8
The Rho-GAP Bem2p plays a GAP-independent role in the morphogenesis checkpoint.
EMBO J. 2002 Aug 1;21(15):4012-25. doi: 10.1093/emboj/cdf416.
9
Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
Curr Biol. 2007 Jul 17;17(14):1181-9. doi: 10.1016/j.cub.2007.05.075. Epub 2007 Jul 5.
10
Feedback control of Swe1p degradation in the yeast morphogenesis checkpoint.
Mol Biol Cell. 2013 Apr;24(7):914-22. doi: 10.1091/mbc.E12-11-0812. Epub 2013 Feb 6.

引用本文的文献

1
Comparison of the Proteomes and Phosphoproteomes of Cells Harvested with Different Strategies.
Proteomes. 2023 Sep 27;11(4):28. doi: 10.3390/proteomes11040028.
3
Yeast osmoregulation - glycerol still in pole position.
FEMS Yeast Res. 2022 Aug 30;22(1). doi: 10.1093/femsyr/foac035.
4
A yeast cell cycle model integrating stress, signaling, and physiology.
FEMS Yeast Res. 2022 Jun 30;22(1). doi: 10.1093/femsyr/foac026.
5
The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis.
Cell Cycle. 2020 Sep;19(17):2105-2118. doi: 10.1080/15384101.2020.1804222. Epub 2020 Aug 14.
6
Hog1 activation delays mitotic exit via phosphorylation of Net1.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8924-8933. doi: 10.1073/pnas.1918308117. Epub 2020 Apr 7.
9
Transcriptional timing and noise of yeast cell cycle regulators-a single cell and single molecule approach.
NPJ Syst Biol Appl. 2018 May 21;4:17. doi: 10.1038/s41540-018-0053-4. eCollection 2018.
10
Prolonged cyclin-dependent kinase inhibition results in septin perturbations during return to growth and mitosis.
J Cell Biol. 2018 Jul 2;217(7):2429-2443. doi: 10.1083/jcb.201708153. Epub 2018 May 9.

本文引用的文献

1
The elm1 kinase functions in a mitotic signaling network in budding yeast.
Mol Cell Biol. 1999 Dec;19(12):7983-94. doi: 10.1128/MCB.19.12.7983.
3
7
Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein.
Nature. 1999 Jan 14;397(6715):172-5. doi: 10.1038/16488.
8
MAP kinase pathways in the yeast Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1264-300. doi: 10.1128/MMBR.62.4.1264-1300.1998.
9
Control of Swe1p degradation by the morphogenesis checkpoint.
EMBO J. 1998 Nov 16;17(22):6678-88. doi: 10.1093/emboj/17.22.6678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验