Suppr超能文献

革兰氏阳性菌中由Clp介导的蛋白水解作用通过一种阻遏物的稳定性进行自我调节。

Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor.

作者信息

Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M

机构信息

Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin, Germany.

出版信息

EMBO J. 2001 Feb 15;20(4):852-63. doi: 10.1093/emboj/20.4.852.

Abstract

The heat shock proteins ClpC and ClpP are subunits of an ATP-dependent protease of Bacillus subtilis. Under non-stressed conditions, transcription of the clpC and clpP genes is negatively regulated by CtsR, the global repressor of clp gene expression. Here, CtsR was proven to be a specific substrate of the ClpCP protease under stress conditions. Two proteins of former unknown function, McsA and McsB, which are also encoded by the clpC operon, act as modulators of CtsR repression. McsA containing zinc finger motifs stabilizes CtsR under non-stressed conditions. McsB, a putative kinase, can inactivate CtsR by modification to remove the repressor from the DNA and to target CtsR for degradation by the ClpCP protease during stress. Thus, clp gene expression in Gram-positive bacteria is autoregulated by a novel mechanism of controlled proteolysis, a circuit of down-regulation by stabilization and protection of a transcription repressor, and induction by presenting the repressor to the protease. Thereby, the ClpC ATPase, a member of the Hsp100 family, was identified as a positive regulator of the heat shock response.

摘要

热休克蛋白ClpC和ClpP是枯草芽孢杆菌ATP依赖性蛋白酶的亚基。在非应激条件下,clpC和clpP基因的转录受到CtsR的负调控,CtsR是clp基因表达的全局阻遏物。在此,已证明CtsR在应激条件下是ClpCP蛋白酶的特异性底物。同样由clpC操纵子编码的两个功能先前未知的蛋白质McsA和McsB,作为CtsR阻遏作用的调节因子。含有锌指基序的McsA在非应激条件下稳定CtsR。McsB是一种假定的激酶,它可以通过修饰使CtsR失活,从而在应激期间将阻遏物从DNA上去除,并将CtsR靶向由ClpCP蛋白酶进行降解。因此,革兰氏阳性菌中的clp基因表达通过一种新的受控蛋白水解机制进行自我调节,即通过稳定和保护转录阻遏物进行下调,以及通过将阻遏物呈现给蛋白酶进行诱导。由此,Hsp100家族成员ClpC ATP酶被鉴定为热休克反应的正调控因子。

相似文献

2
The tyrosine kinase McsB is a regulated adaptor protein for ClpCP.
EMBO J. 2007 Apr 18;26(8):2061-70. doi: 10.1038/sj.emboj.7601655. Epub 2007 Mar 22.
3
Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival.
J Bacteriol. 2001 Dec;183(24):7295-307. doi: 10.1128/JB.183.24.7295-7307.2001.
6
A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis.
EMBO J. 2005 Oct 5;24(19):3435-45. doi: 10.1038/sj.emboj.7600780. Epub 2005 Sep 15.
7
The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C.
Mol Microbiol. 2000 Oct;38(2):335-47. doi: 10.1046/j.1365-2958.2000.02124.x.
9
ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
Mol Microbiol. 1999 May;32(3):581-93. doi: 10.1046/j.1365-2958.1999.01374.x.
10
CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria.
Mol Microbiol. 2011 Feb;79(3):772-85. doi: 10.1111/j.1365-2958.2010.07489.x. Epub 2011 Jan 5.

引用本文的文献

1
Structural insights into the regulation of protein-arginine kinase McsB by McsA.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320312121. doi: 10.1073/pnas.2320312121. Epub 2024 Apr 16.
2
Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis.
Microb Cell Fact. 2023 Nov 9;22(1):231. doi: 10.1186/s12934-023-02239-3.
3
Widespread Arginine Phosphorylation in Staphylococcus aureus.
Mol Cell Proteomics. 2022 May;21(5):100232. doi: 10.1016/j.mcpro.2022.100232. Epub 2022 Apr 12.
4
Update on the Protein Homeostasis Network in .
Front Microbiol. 2022 Mar 8;13:865141. doi: 10.3389/fmicb.2022.865141. eCollection 2022.
5
6
7
A pH-Dependent Gene Expression Enables Bacillus amyloliquefaciens MBNC to Adapt to Acid Stress.
Curr Microbiol. 2021 Aug;78(8):3104-3114. doi: 10.1007/s00284-021-02573-y. Epub 2021 Jun 26.
8
9
The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in .
Front Microbiol. 2020 May 12;11:900. doi: 10.3389/fmicb.2020.00900. eCollection 2020.
10
Synthesis and Antichlamydial Activity of Molecules Based on Dysregulators of Cylindrical Proteases.
J Med Chem. 2020 Apr 23;63(8):4370-4387. doi: 10.1021/acs.jmedchem.0c00371. Epub 2020 Apr 15.

本文引用的文献

1
The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C.
Mol Microbiol. 2000 Oct;38(2):335-47. doi: 10.1046/j.1365-2958.2000.02124.x.
2
The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins.
J Bacteriol. 2000 Jun;182(11):3259-65. doi: 10.1128/JB.182.11.3259-3265.2000.
3
The structures of HsIU and the ATP-dependent protease HsIU-HsIV.
Nature. 2000 Feb 17;403(6771):800-5. doi: 10.1038/35001629.
4
CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes.
Mol Microbiol. 2000 Feb;35(4):800-11. doi: 10.1046/j.1365-2958.2000.01752.x.
5
Posttranslational quality control: folding, refolding, and degrading proteins.
Science. 1999 Dec 3;286(5446):1888-93. doi: 10.1126/science.286.5446.1888.
6
Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis.
Electrophoresis. 1999 Aug;20(11):2225-40. doi: 10.1002/(SICI)1522-2683(19990801)20:11<2225::AID-ELPS2225>3.0.CO;2-8.
7
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA.
Nature. 1999 Sep 2;401(6748):90-3. doi: 10.1038/43481.
9
Substrate targeting in the ubiquitin system.
Cell. 1999 May 14;97(4):427-30. doi: 10.1016/s0092-8674(00)80752-7.
10
ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
Mol Microbiol. 1999 May;32(3):581-93. doi: 10.1046/j.1365-2958.1999.01374.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验