Fitzmaurice G M, Lipsitz S R, Molenberghs G, Ibrahim J G
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biometrics. 2001 Mar;57(1):15-21. doi: 10.1111/j.0006-341x.2001.00015.x.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored.
本文考虑了存在失访时纵向二元反应关联参数估计中的偏差影响。对于不能假定失访为完全随机过程的情况,考虑了多种不同的估计方程方法。特别地,研究了标准广义估计方程(GEE)、基于条件残差的GEE、基于协方差矩阵多元正态估计方程的GEE以及二阶估计方程(GEE2)。在各种失访过程下,从有限样本和渐近偏差方面对这些不同的GEE估计量进行了比较。最后,探讨了关联参数估计中的偏差与均值参数估计中的偏差之间的关系。