Suppr超能文献

基于信号字典中稀疏分解的盲源分离

Blind source separation by sparse decomposition in a signal dictionary.

作者信息

Zibulevsky M, Pearlmutter B A

机构信息

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Neural Comput. 2001 Apr;13(4):863-82. doi: 10.1162/089976601300014385.

Abstract

The blind source separation problem is to extract the underlying source signals from a set of linear mixtures, where the mixing matrix is unknown. This situation is common in acoustics, radio, medical signal and image processing, hyperspectral imaging, and other areas. We suggest a two-stage separation process: a priori selection of a possibly overcomplete signal dictionary (for instance, a wavelet frame or a learned dictionary) in which the sources are assumed to be sparsely representable, followed by unmixing the sources by exploiting the their sparse representability. We consider the general case of more sources than mixtures, but also derive a more efficient algorithm in the case of a nonovercomplete dictionary and an equal numbers of sources and mixtures. Experiments with artificial signals and musical sounds demonstrate significantly better separation than other known techniques.

摘要

盲源分离问题是从一组线性混合信号中提取潜在的源信号,其中混合矩阵是未知的。这种情况在声学、无线电、医学信号与图像处理、高光谱成像及其他领域中很常见。我们提出一种两阶段分离过程:先验选择一个可能超完备的信号字典(例如,小波框架或学习得到的字典),假设源信号在其中可稀疏表示,然后通过利用源信号的稀疏可表示性来分离源信号。我们考虑源信号比混合信号更多的一般情况,同时也推导出在非超完备字典且源信号与混合信号数量相等情况下更高效的算法。对人工信号和音乐声音进行的实验表明,其分离效果明显优于其他已知技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验