Suppr超能文献

连续时间过程中的 Lévy 飞行。

Lévy flights from a continuous-time process.

作者信息

Sokolov I M

机构信息

Theoretische Polymerphysik, Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg im Breisgau, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 1):011104. doi: 10.1103/PhysRevE.63.011104. Epub 2000 Dec 20.

Abstract

Lévy flight dynamics can stem from simple random walks in a system whose operational time (number of steps n) typically grows superlinearly with physical time t. Thus this process is a kind of continuous-time random walk (CTRW), dual to the typical Scher-Montroll model, in which n grows sublinearly with t. Models in which Lévy flights emerge due to a temporal subordination allow one easily to discuss the response of a random walker to a weak outer force, which is shown to be nonlinear. On the other hand, the relaxation of an ensemble of such walkers in a harmonic potential follows a simple exponential pattern, and leads to a normal Boltzmann distribution. Mixed models, describing normal CTRW's in superlinear operational time and Lévy flights under the operational time of subdiffusive CTRW's lead to a paradoxical diffusive behavior, similar to the one found in transport on polymer chains. The relaxation to the Boltzmann distribution in such models is slow, and asymptotically follows a power law.

摘要

Lévy飞行动力学可能源于一个系统中的简单随机游走,该系统的运行时间(步数n)通常随物理时间t超线性增长。因此,这个过程是一种连续时间随机游走(CTRW),与典型的Scher-Montroll模型对偶,在后者中n随t亚线性增长。由于时间从属关系而出现Lévy飞行的模型使人们能够轻松地讨论随机游走者对外界弱力的响应,结果表明这种响应是非线性的。另一方面,如果这样一群游走者处于简谐势场中,其弛豫遵循简单的指数模式,并导致正常的玻尔兹曼分布。混合模型描述了超线性运行时间下的正常CTRW以及次扩散CTRW运行时间下的Lévy飞行,会导致一种反常的扩散行为,类似于在聚合物链上的输运中发现的行为。在这类模型中向玻尔兹曼分布的弛豫是缓慢的,并且渐近地遵循幂律。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验