Santos M, Figueiredo W
Departamento de Física-Universidade Federal de Santa Catarina 88040-900, Florianópolis, SC, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 1):042101. doi: 10.1103/PhysRevE.63.042101. Epub 2001 Mar 19.
The short-time behavior of the Baxter-Wu model is investigated through the relaxation of the order parameter at the critical temperature. We considered Monte Carlo simulations for this model on a triangular lattice, and we studied relaxation starting from the fourfold-degenerate ground state. Using the short-time scaling formalism we found the static critical exponents beta and nu of the model and the corresponding dynamical critical exponent z. The values of the static exponents we find agree with the exact ones. To the best of our knowledge, this is the first determination of the dynamical critical exponent of the Baxter-Wu model.
通过在临界温度下序参量的弛豫来研究巴克斯特 - 吴模型的短时行为。我们考虑了该模型在三角形晶格上的蒙特卡罗模拟,并研究了从四重简并基态开始的弛豫过程。使用短时标度形式,我们找到了该模型的静态临界指数β和ν以及相应的动态临界指数z。我们得到的静态指数值与精确值相符。据我们所知,这是对巴克斯特 - 吴模型动态临界指数的首次确定。