De Atauri P, Acerenza L, Kholodenko B N, De La Iglesia N, Guinovart J J, Agius L, Cascante M
Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Biochem J. 2001 May 1;355(Pt 3):787-93. doi: 10.1042/bj3550787.
It is widely assumed that the control coefficient of an enzyme on pathway flux decreases as the concentration of enzyme increases. However, it has been shown [Kholodenko and Brown (1996) Biochem. J. 314, 753-760] that enzymes with sigmoidal kinetics can maintain or even gain control with an increase in enzyme activity or concentration. This has been described as 'paradoxical control'. Here we formulate the general requirements for allosteric enzyme kinetics to display this behaviour. We show that a necessary condition is that the Hill coefficient of the enzyme should increase with an increase in substrate concentration or decrease with an increase in product concentration. We also describe the necessary and sufficient requirements for the occurrence of paradoxical control in terms of the flux control coefficients and the derivatives of the elasticities. The derived expression shows that the higher the control coefficient of an allosteric enzyme, the more likely it is that the pathway will display this behaviour. Control of pathway flux is generally shared between a large number of enzymes and therefore the likelihood of observing sustained or increased control is low, even if the kinetic parameters are in the most favourable range to generate the phenomenon. We show that hepatic glucokinase, which has a very high flux control coefficient and displays sigmoidal behaviour within the hepatocyte in situ as a result of interaction with a regulatory protein, displays sustained or increased control over an extended range of enzyme concentrations when the regulatory protein is overexpressed.
人们普遍认为,随着酶浓度的增加,酶对途径通量的控制系数会降低。然而,已有研究表明[霍洛坚科和布朗(1996年),《生物化学杂志》314卷,753 - 760页],具有S型动力学的酶在酶活性或浓度增加时能够维持甚至增强控制作用。这被描述为“反常控制”。在此,我们阐述了变构酶动力学表现出这种行为的一般要求。我们表明,一个必要条件是酶的希尔系数应随底物浓度的增加而增加,或随产物浓度的增加而降低。我们还根据通量控制系数和弹性的导数描述了反常控制发生的必要和充分条件。推导得出的表达式表明,变构酶的控制系数越高,该途径表现出这种行为的可能性就越大。途径通量的控制通常由大量酶共同承担,因此即使动力学参数处于产生该现象的最有利范围内,观察到持续或增强控制的可能性也很低。我们表明,肝葡萄糖激酶具有非常高的通量控制系数,并且由于与一种调节蛋白相互作用,在原位肝细胞内表现出S型行为,当调节蛋白过表达时,在较宽的酶浓度范围内表现出持续或增强的控制作用。