Tan K H, Dobbie M S, Felix R A, Barrand M A, Hurst R D
Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol, UK.
Neuroreport. 2001 May 25;12(7):1329-34. doi: 10.1097/00001756-200105250-00008.
The suitability of various commercially available endothelial cell lines in studies of astrocytic/endothelial cell interactions was assessed. The endothelial-like cell line ECV304 was compared with T24/83, Eahy929, and b.End5 and rat cerebral endothelial cells in their ability, when co-cultured with rat (C6) glioma cells, to form a transendothelial electrical resistance (TEER), an indicator of tight junction formation which is an important property of the blood-brain barrier. As reported previously, the basal TEER of ECV304 cell monolayers was significantly enhanced upon co-culture, an effect reproduced by human 1321N1 astrocytes and primary rat astrocytes. T24/83 cells formed a patchy, gapped monolayer, which produced a poor basal TEER with little in the way of an increase upon co-culture. Similarly, all the other cell monolayers analysed demonstrated poor TEERs that were only moderately increased upon co-culture. These data confirm that while no endothelial cell line with ideal features is available, ECV304 cells remain an appropriate choice especially for studies of astrocyte/endothelial cell interactions.